

DEPARTMENT OF INFORMATICS

TECHINICAL UNIVERSITY OF MUNICH

Master Thesis in Informatics

Implementation of an exploratory workbench for

identifying similar design decisions

 Prateek Bagrecha

I

DEPARTMENT OF INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Master Thesis in Informatics

Implementation of an exploratory workbench for

identifying similar design decisions

Implementierung einer explorativen workbench zur

Identifizierung ähnlicher Designentscheidungen

Author: Prateek Bagrecha

Supervisor: Prof. Dr. Florian Matthes

Advisor: Manoj Mahabaleshwar M.Sc.

Date: February 15, 2018

II

I confirm that this master's thesis is my own work and I have documented all sources and

materials used.

Munich, 15.02.2018 ______________________

Place, Date Signature

III

IV

Acknowledgments

First and foremost, I would like to thank my advisor Manoj Mahabaleshwar for his great

support and fruitful insights for this thesis. Manoj has been very patience to me and his kindness

will always be remembered. Furthermore, I would like to thank Prof. Dr. Florian Matthes for

his ideas and for making it possible to write this thesis at the chair of Software Engineering for

Business Information Systems held by him.

“Its because I cannot do everything on my own that I have my family and friends”

I have come this far because of the help I received from family and friends. Blessings of my

parents and my granny have always stayed with me to remind me every part of the way that I

can do this. My brothers and sister-in-law love has supported me throughout.

I would like to thank my friends Akash, Krishna, Pushkar and Kavya for accepting me and

pushing me to work hard because it was worth. I thank my friends Koushik, Ajay and Karthik

for always being there for me whenever I needed them.

Last but not the least, I would like to thank again my fiancée, Sonal, who despite all my faults

has accepted me.

V

VI

Abstract

Software architecture is a set of high level descriptions or structures that talk about a software

system. These structures are required to reason about system design and decisions. Architects

and developers regularly make decisions to address stakeholders’ concerns during the

realization of software systems. Hence, explicitly capturing architectural design decisions as a

part of architectural knowledge management is becoming increasingly important in firms

providing professional Information Technology (IT) services.

Large organizations or software projects usually have large number of designs decisions. Often

these decisions are similar in nature. However, since the decisions made are seldom shared

within an organization, knowledge vaporization occurs. Due to this, reuse of past knowledge

to make new sustainable decisions. Furthermore, development of techniques that feasible for

deriving similarities between design decisions is a challenging task. Application of clustering

algorithms have helped paved way in solving many such challenges, for example, identifying

duplicates. Hence, considering this problem to fall under the same domain, the thesis will

provide a platform for architects and developers to explore the challenge.

The work here will present a prototypical implementation of a web-based workbench for

exploring the use of clustering algorithms and similarity measures to derive similar design

decisions in the scope of a single project or multiple. The thesis will provide the necessary

information and discuss the need for finding similarities in detail. Moreover, the work here will

be using open sources projects that are industrially significant to test the workbench, evaluate

the results and provide its limitations.

VII

Table of Contents

 Abstract…...……………….………………………………………………………………VI

 Table of Contents………………………………………………………………………...VII

 List of Figures…………….………………………………………………………………..IX

 List of Tables………………………………………………………………………………..X

1. Introduction and Theory………………………………………………………………1

1.1 Motivation………………………………………………………………………............1

1.2 Background……………………………………………………………………..............3

1.2.1 Architectural Design Decisions………………………………………………..3

1.2.2 Introduction of Clustering Algorithms…………………………………….......5

1.2.3 Introduction to Word2Vec…………………………………………………......7

1.2.4 Semantic Similarity and Similarity Measures…………………………………8

1.3 Research Questions…………………………………………………………………....11

1.4 Organization of Thesis………………………………………………………………...12

2. Related Work…………………………………………………………………………13

2.1 History of Architectural Design Decision…………………………………………….13

2.2 Dynamic Knowledge Model………………………………………………………….14

2.3 Automatic Extraction of Design Decision from Issue Management System…………16

2.4 Automatic Duplicate Detection in Issue Tracking System…………………………...17

3. Requirements Analysis and Experimental Setup………………………………….18

4. Requirements………………………………………………………………………...25

5. Overview of Workbench Architecture……………………………………………..28

5.1 Pre-requisites………………………………………………………………………….28

5.2 Overview of Application Concepts…………………………………………………...29

5.3 User-Centric Pipeline Execution Flow…...…………………………………………...31

5.4 System Architecture…………………………………………………………………..35

6. Review and Assessment of Requirements Fulfilled………………………………..39

7. Evaluation and Results………………………………………………………………41

8. Conclusion……………………………………………………………………………43

 Bibliography………………………………………………………………………….45

 Appendix………………………………………………………………………………47

A. Use Case Scenarios…………………………………………………………………………47

B. Requirements Specifications………………………………………………………………..50

VIII

C. API Specifications…………………………………………………………………………..54

D. Abbreviations……………………………………………………………………………….55

IX

List of Figures

1. Conceptual design decisions model by ISO…………………………………………....4

2. Dynamic Meta Model ………………………………………...………………………..15

3. ML pipeline for detecting design decisions and classification……………………….16

4. Derived Model…………………………………………………………………………..19

5. Graph Comparison of ADDs directly using mixed Euclidian measure……………..21

6. Results of comparing ADD using Mixed-Euclidian similarity

measure………………………………………………………………………………….22

7. Sample clustering process from RM Studio…………………………………………..23

8. Sample pre-processing steps from RM Studio………………………………………..23

9. Sample results from RM Studio……………………………………………………….24

10. AMELIE System Architecture………………………………………………………...25

11. User-centric process overview for training and

predicting similar design decisions……………………………………………………29

12. Homepage of the Workbench for Document Clustering and Prediction…………...32

13. Page for Creating Training Pipeline.…………………...……………………………..33

14. Training Pipeline Stages Example…………………………………………………….34

15. Application Page showing a list of previously trained pipelines…………………….34

16. Application page showing the selected pipeline and text area

to add new design decision…………………………………………………………….35

17. System architecture of the workbench……………………………………………….36

18. Sample class diagram of training component………………………………………..37

19. Class diagram of predict component…………………………………………………38

X

List of Tables

1. Example design decisions from Apache Spark project……………………………..2

1

Introduction and Theory

Over the past few years, the software research community has emphasized on need for

capturing and sharing elements of software architectural knowledge(AK) and design decisions.

One of more recent challenges that researchers are looking to tackle is to prevent vaporization

of knowledge related to design decisions. Lately, several meta-models have emerged to

efficiently capture and manage design decisions. Many architectural knowledge management

(AKM) tools use these meta-models to support decision-makers in documenting design

decisions. AKMs help in making implicit knowledge residing within a software architecture

explicit. As software architecture evolves, the focus is on reusing past design decisions to make

new sustainable decisions.

1.1 Motivation

In large software-intensive projects, there are multiple personnel that sustain impairments in

terms of time and effort due to analysis of problems that are similar in nature. Software

architects and developers often come across scenarios where they must make similar decisions

as in the past to address similar design concerns. Lacking awareness of past decisions,

architects and developer incur losses in terms of time and money invested when a new design

concern arises. The solutions that could be applied across projects are not shared.

In comparing new design concerns with the explicit knowledge from old design decisions,

decision-makers can reduce analysis time by inferring details from past decisions. There is a

reduction in the time for resolving a new design concern because the turnaround time is also

reduced when constraints and design rules are already known.

For instance, Apache Spark is a large opensource software project with more than 20,000 issues

that have been captured in an issue management system since early 2014. Much of these issues

can be classified as design decisions as they affect the architecture of Apache Spark software.

Consider two such design decisions as shown in Table 1. First design decision, DD1, is a

decision reflecting a change in the functionality of the system and was created in June 2015.

Unaware of the existence of DD1, a similar request DD2 in Table 1 was made in February 2017

in spite of developers having already discussed and closed DD1. DD2 was discussed and

resolved in March 2017.

2

Ref ID DD1 DD2

Issue# SPARK-8321 SPARK-19625

Description Authorization Support (on all

operations not only DDL) in

Spark Sql

Authorization Support (on all

operations not only DDL) in

Spark Sql version 2.1.0

Concepts Apache, SQL, authentication Apache, SQL, authentication

Keywords Spark, operations, Support,

Authorization

Spark, operations, Support,

Authorization

Components SQL Spark Core, SQL

Issue Type Improvement Improvement

Created Date 12/Jun/15 03:34 16/Feb/17 09:36

Resolved Date 16/Jun/16 08:22 24/Mar/17 01:21

Table 1 Example design decisions from Apache Spark project

By looking at various attributes of these two decisions, it is evident that they are similar in

many ways. They both influence the same set of components: Spark Core and SQL. They are

both related to same three concepts: Apache, SQL and Authentication. They have a similar

description of an improvement. However, the issues raised are approximately a year and half

apart by people with no apparent connection and from different locations. DD2 was resolved

as a duplicate of DD1 after a month of discussion. It would have been helpful for the second

reporter to have knowledge existence of DD1.

It is clear to see, documenting and sharing architectural design decisions will help architects

and developers be aware of past decisions (cf. 2, 3, 9). Documentation helps them in specifying

design rules. It also helps them to derive relationship between design decisions and represent

them using standard notations such as UML diagrams or directed graphs. These representations

form vital means of communication. By using common visual representations, one can then

derive complexity involved for addressing similar design concern.

The architects and developers, during the decision-making process, want more information.

The information that will help them consider all necessary elements to develop a fault-free

maintainable software. This work is motivated by need for making every member of an

organization aware of past decisions and avoiding losses mentioned before.

https://issues.apache.org/jira/browse/SPARK-8321
https://issues.apache.org/jira/browse/SPARK-19625

3

Recent success in using clustering algorithms in the fields of duplicate detection have lead to

them be considered in other areas of pattern recognition. The application of the clustering

algorithm and similarity measure to detect similar design decisions is a relatively new approach

in the domain of software architecture decision-making. Due to lack of previous work in this

domain, there is a need for a tool that supports automatic identification of similar design

decisions. The primary contribution of this work is to provide a prototypical implementation

of a workbench that will help architects and developers explore clustering algorithms and

similarity measure for identifying similar design decisions.

1.2 Background

1.2.1 Architectural Design Decisions

This section introduces ISO/IEC/IEEE standard model that defines elements of design

decisions.

In the 5th Working IEEE/IFIP Conference on Software Architecture (WICSA'05) 2005, Bosch

and et. al. introduced to the software architecture community a different perspective on

software architecture. They defined software architecture as “a set of architectural design

decisions”. [6].

Grady Booch had the following to say about architectural design decisions in his keynote

speech at Saturn 2016 Conference “Architecting the Unknown” - "In software engineering

and software architecture design, architectural decisions are design decisions that

address architecturally significant requirements; they are perceived as hard to make and/or

costly to change”. [9]

Informally, an Architecture Design Decision is any description that talks about changes to the

system, why those changes were made, what behaviours are not allowed and what behaviours

are mandatory.

Architectural design decisions are influenced and impacted by the NFRs: Non-Functional

Requirements of a software systems. They either concern one or more parts of the system or

the whole system itself. Each architectural design decision has a description of design concern

which is architecturally significant for a software system. Several possible solutions exist for a

design concern and Select one of the alternatives in decision-making process.

4

Currently there are number of models that have been standardized and that define a software

architecture as a set of design decisions. Figure 1 shows the conceptual model of Architectural

Design Decision and Rationale as standardized in ISO/IEC/IEEE 42010:2011. The work here

will use this model to provide an overview of design decisions and concepts associated with it.

However, this is used only to understand design decisions and it contributes to this work

partially. Later in this work, more models will be discussed to understand on deeper levels.

The conceptual model defines three important concepts: Architectural Rationale, Concern and

AD Element. It also defines all the logical associations between each of them.

AD Element - Any item of a software architecture is considered Architecture Description(AD)

Elements. It is recursive definition in the sense that any item that is part of AD element is also

consider an AD Element. The changes to a software architecture are nothing but operation that

lead to adding, removing or updating the AD Elements.

Concern - Any interest in the system is the “concern” of that system. Examples include purpose

of the system, its behaviour, requirements, functionality etc. a design decision pertains to a

concern and affects one or more AD Elements. New Concerns may raise by making a design

decision.

Architecture Rationale - The justification, or explanation pertaining to design decisions are

within the scope of Architectural Rationale. It records why a decision was made and provides

a motive for discarding alternative.

Figure 1: Conceptual model of Architecture Decisions & Rationale as per ISO/IEC/IEEE 2010:2011 Standard.

Figure 1 Conceptual design decisions model by ISO

5

1.2.2 Introduction to Document Clustering Algorithms

This section briefly outlines clustering as a technique for finding similarity, similarity measures

that are integral for this work. The parts of this section refer to the supplied information to be

processed by the algorithms as “documents” and the characteristics of the documents as

“features”. However, within the scope of this thesis, the term “document” refers to a design

decision and it is used only for purpose of providing generic definitions.

Clustering

Cluster analysis or clustering is the task of grouping a set of documents called as clusters.

Documents in a cluster are closer to each other than to those in other clusters. This is a very

common technique used for recognizing patterns within a set of documents. Various clustering

algorithm exists. This works main interest lies in k-Means and Bisecting k-Means clustering,

which are discussed in the next sub sections.

Hierarchical Clustering

This is a clustering technique that aims to partition your documents into a hierarchy of clusters.

There are two strategies in hierarchical clustering: a) Start with each document in its own

cluster and merge pairs of them when moving up the hierarchy. b) Start with all documents in

one cluster and perform splits recursively when moving down the hierarchy.

k-Means Clustering

This is a clustering technique that aims to partition your n document instances into k clusters

in which each document belongs exclusively to one cluster with nearest mean distance to it.

the k-Means algorithm finds groups within documents with number of groups defined by k.

The algorithm works iteratively to assign each document to one of k document groups based

on the attributes that are provided. Data points are clustered based on feature similarity. k-

means accepts a distance function that it uses to calculate the distance between a chosen cluster

centre and a document. The distance function is applied iteratively to all documents in the

dataset until all documents belong to a document group or cluster.

Bisecting k-Means

Bisecting k-Means is much like a combination of a hierarchical clustering and k-Means

clustering. It first applies k-Means algorithm to create two clusters. This step is called the

6

“Bisecting” step. It then iteratively repeats the bisecting step and produces more splits and

performs all the steps again until desired number of clusters k is reached.

Document Clustering

Application of clustering algorithm to textual documents is known as Document Clustering (or

text clustering). This type of clustering technique involves use of bag of words that describe

the contents of the documents known as descriptors. Extraction of the descriptors involve use

of many pre-processing operations like tokenization, removal of stop words, stemming etc.

Most common use of document clustering is for grouping similar documents such as tweets,

news feeds or web context, into meaningful categories list.

k-Means (and its variants) and hierarchical clustering are especially popular for their uses in

document clustering. These algorithms can further be classified as hard or soft clustering

algorithms. Hard clustering computes a hard assignment meaning each document is a member

of exactly one cluster. In soft assignment, each document’s assignment is a distribution over

all cluster. In soft assignment, a document has fractional membership in several clusters [19].

In practice, application of document clustering usually involves following steps to be executed

sequentially

1. Tokenization

Tokenization is the process of breaking down a document into smaller units called tokens such

as words and phrases. Documents are input to a tokenizer, a program that performs

tokenization. Tokenizers identify tokens using methods like regular expressions, flagging,

separating sequences using delimiters like comma and semi-colons. This process is called

tokenizing. Popular methods of tokenizing are bag-of-words, n-gram model and word2vec.

2. Stemming and Lemmatization

To avoid repeated calculation of similar information, we reduce all tokens to their base forms

and then group them. This means reducing words to their root forms. For example, grasping to

grasp. These processes are called as Stemming (reducing inflected words to their base form)

and Lemmatisation (grouping inflected words together).

7

3. Removing stop words and punctuation

Stop words are tokens are trivial words that do not reveal additional characteristics of a text. It

is a good idea to eliminate such words and punctuation marks as they are not very useful for

analysis.

4. Feature extraction or generation

After Step 3, it is safe to assume that the remaining tokens distinctly reveal characteristics of

the documents. These tokens now must be processed in some way to generate features that

clustering algorithm can work on. In context of this work, features are derived values that

promises to be non-redundant and informative.

5. Clustering

After the features are extracted from the tokens, they can now be fed to clustering algorithms

for forming meaningful clusters.

6. Evaluation and Visualization

Finally, the clustering models can be assessed by various metrics such f-measure to evaluate

its performance and accuracy. It is sometimes helpful to visualize the results by plotting the

clusters into low dimensional space.

This ends our introduction to basics of clustering methods and procedure.

1.2.3 Introduction to Word2Vec

Clustering algorithm like k-Means typically require the text input to be represented as a fixed

length vector. This kind of representation is very central to natural language processing. The

representation of words as sparse vectors derived using training models in neural networks are

called word embeddings. Word2vec tool is a collection of connected models that are used to

produce word embeddings. These models are shallow, two-layer neural networks that are

trained to reconstruct contexts of words. Word2vec takes as its input a large corpus of text and

produces a vector space that typically several hundred dimensions in size. Each unique word

in the corpus is assigned to a corresponding vector in the space.

Word vectors are positioned in the vector space such that words that share common context in

corpus are next to one another. [12]. Word2vec creates vectors that are distributed numerical

representations of word features. It does so without human intervention.

8

Given enough data, usage and contexts, Word2vec can make highly accurate guesses about a

word’s meaning based on past appearances. Those guesses can be used to establish a word’s

association with other words e.g. “man” is to “boy” what “woman” is to “girl” or “man” is to

“king what “woman is to “queen”. It can also be used to cluster documents and classify them

by topic. Those clusters can form the foundation of search, sentiment analysis and

recommendations in diverse fields of scientific research, legal discovery, e-commerce and

customer relationship management.

1.2.2 Introduction to Semantic Similarity and Similarity Measures

This section will introduce you to what semantic similarity is and detail some distance

functions or similarity measures that are used in determining it.

Semantic Similarity

Semantic similarity is a metric defined over a set of documents or terms, where the idea of

distance between them is based on the likeness of their meaning or semantic content as opposed

to similarity which can be estimated regarding their syntactical representation. These are

mathematical tools used to estimate the strength of the semantic relationship between units of

language, concepts or instances through numerical descriptions obtained.

Similarity is subjective and is highly dependent on the domain and application. For example,

two fruits are similar because of colour or size or taste. Care should be taken when calculating

distance across dimensions or features that are unrelated. The relative values of each element

must be normalized else one feature could end up dominating the distance calculation.

Similarities are measured in the range 0 to 1 [0,1].

Similarity Measures

A Similarity Measure is the measure of how much alike two data objects are. Similarity

measure in context of data mining is a distance between points of dimensions representing

features of the objects. If this distance is small, it will be the high degree of similarity where as

a large distance will be the low degree of similarity.

A similarity measure is also known as Similarity Function which is a real-valued function that

quantifies the similarity between two objects. Although no single definition of a similarity

measure exists, usually such measures are in some sense the inverse of distance metrics: they

9

take on large values for similar objects and either zero or a negative value for very dissimilar

objects.

There two important aspects of the similarity measure that are of used in this thesis viz.

1. Similarity between two documents or document Vs query terms: A similarity

measure can be used to calculate similarity between two documents, two queries, or

one document and one query.

2. Document Ranking: similarity measure score can be used to rank how which

documents are more similar than others.

All clustering algorithms use similarity or so called “distance functions” to determine cluster

members. Few of the most popular similarity measures are discussed in the following

subsections.

Euclidian Distance

It is a standard metric for geometrical problems. It is the ordinary distance between two points

and can be easily measured with a ruler in two- or three-dimensional space. Euclidean distance

is widely used in clustering problems, including clustering text. It is also the default distance

measure used with the K-means algorithm. Measuring distance between text documents: given

two documents, da and db represented by their term vectors ta and tb respectively. The Euclidean

distance of the two documents is defined as:

Where, the term set is T = {t1, t2,..….., tn}In this calculation Wt,a = tf-idf(da, t)

Euclidean distance is the most commonly used distance function. In most cases when people

talk about distance, they will refer to Euclidean distance.

Manhattan Distance

Manhattan distance is a metric in which the distance between two points is the sum of the

absolute differences of their Cartesian coordinates. In a simple way of saying it is the total sum

of the difference between the x-coordinates and y-coordinates.

Suppose we have two points A and B if we want to find the Manhattan distance between them.

We just have to sum up the absolute x-axis and y-axis. variation means we have to find how

10

these two points A and B are varying in X-axis and Y- axis. In a more mathematical way of

saying Manhattan distance between two points measured along axes at right angles.

In a plane with p1 at (x1, y1) and p2 at (x2, y2), Manhattan distance = |x1 – x2| + |y1 – y2|

This Manhattan distance metric is also known as Manhattan length, rectilinear distance, L1

distance or L1 norm, city block distance, taxi-cab metric, or city block distance.

Cosine Similarity

Cosine similarity is a measure of similarity between two vectors of an inner product space that

measures the cosine of the angle between them. Cosine similarity metric finds the normalized

dot product of the two documents. By determining the cosine similarity, we would effectively

try to find the cosine of the angle between the two documents. The cosine of 0° is 1, and it is

less than 1 for any other angle.

It is thus a judgement of orientation and not magnitude: two vectors with the same orientation

have a cosine similarity of 1, two vectors at 90° have a similarity of 0, and two vectors

diametrically opposed have a similarity of -1, independent of their magnitude.

Cosine similarity is particularly used in positive space, where the outcome is neatly bounded

in [0,1]. One of the reasons for the popularity of cosine similarity is that it is very efficient to

evaluate, especially for sparse vectors.

Jaccard Coefficient

Jaccard Coefficient is applied to when you want to find similarity between two objects that are

sets. It is used to measure similarity between sets, and it can be calculated by dividing the size

of the intersection by the size of the union of the sets.

A set is (unordered) collection of objects {a, b, c}. The notation of elements separated by

commas inside curly brackets {} is used for sets. They are unordered so {a, b} = {b, a}.

Cardinality of a set A, denoted by |A|, is the count of number of elements in A. Intersection

between two sets A and B is denoted A ∩ B and reveals all items which are in both sets A, B.

Union between two sets A and B is denoted A ∪ B and reveals all items which are in either set.

The Jaccard Coefficient measures the similarity between finite sample of sets and is defined

as the cardinality of the intersection of sets divided by the cardinality of the union of the

sample sets. Suppose you want to find Jaccard similarity between two sets A and B it is the

ration of cardinality of A ∩ B and A ∪ B. Jaccard Similarity: J (A, B) = A ∩ B/ A ∪ B

11

1.3 Research Questions

In this section of the thesis the main research questions that are to be answered are deliberated.

Each subsection of the research question will outline the problem domain and provide an

approach which will be elaborated in span of the thesis.

What are the functional and non-functional requirements of a workbench that supports

in identifying similar design decisions?

Existing systems are analysed in the later part of the thesis to determine what makes a system

that supports identifying similarities between design decisions. Important questions such as

what the drawbacks of the existing systems are, how does the workbench overcome these

drawbacks and additional purposes that are fulfilled by the workbench are discussed.

How to identify similar design decisions using context-aware similarity measures and

clustering analysis?

Direct comparison of the design decisions is not possible due to its textual nature and presence

of large number of strings. Within this thesis, use of operations that transform design decisions

into representations that can be used by similarity measures and clustering algorithms are

discussed.

How can a workbench support end-user in identifying the contextual parameters that are

necessary for identifying similar design decisions?

Design decisions need to be broken down to smaller parts that convey its architectural

description. Only parts that include context information are kept and others discarded.

Identifying what parts to be used to identify similarities is of vital importance. Context include

a precise knowledge contained within the design decision. The thesis provides a brief reasoning

for using only certain parts of the design decision to identify the information contained in it.

This question deals with choosing the right similarity measure to compare design decisions.

Choice of similarity measure should also be based on the efficiency of the similarity measure

in calculating the similarity in context of software architecture.

12

1.4 Organization of Thesis

Given sufficient motivation behind the topic, necessary background information and the

research questions that are going to be answered, the thesis will move to the section to discuss

the previous works in the field that have influence the topic. The subsequent chapters are

organized as follows: Chapter 3 will provide detailed explanation of experimental setup.

Chapter 4 provides an overview of elicited requirements of prototypical implementation of the

workbench. In Chapter 5 demonstrates how the prototype has been developed, challenges faced

and what are its limitations. Chapter 6 provides evidence of usefulness of the workbench for

not only identifying similar design decisions, but also expresses the surprise of additional

benefits of obtaining relationship between them. Finally, the thesis will conclude by

summarizing the work, mentioning few lessons learnt and providing a future outlook on

revision of workbench and clustering techniques used here.

13

Related Works

This section of the thesis brings to the attention two things: First, a view of evolution of the

software architecture models with the lack of information on relationship between design

decisions. Second, it summarizes the previous works in the field and how these works have

inspired new theories.

2.1 History of Architectural Design Decisions

Until 2004, the definition of software architecture did not mention Architecture Rationale. It

was first mentioned in the definition provided by Perry and Wolf [18]. Jansen and Bosch in

2005 [6] introduced the software architecture as a composition of a set of design decisions.

After which, several papers came to be published on architectural design decision. the

community saw a raise in them momentum of research on architectural design decisions.

In 2009, Tang et al. [7] classified architectural knowledge into four broad categories, namely

context, design, general, and reasoning knowledge. The context knowledge captures the

project-specific information such as management information and architectural significant

requirements. The design knowledge comprises of the architectural designs of the software

systems.

In 2010, a conceptual model that described relationship between architecture, design decisions

and architecture rationale was standardized by ISO/IEC/IEEE board. (cf. chapter 1.2).

In 2016, Bhat et al. [3] introduced a new AKM framework that considered design knowledge

to be part of context knowledge and combinedly refer to them as dynamic knowledge. They

created a dynamic knowledge model (cf. section 2.2) that overcame the drawbacks of static

models in terms of reusability and ability to be configured according to project context.

In 2017, Bhat et. al developed a tool to automatically extract design decisions from issues

management system. This tool become part of their AKM framework [8].

So far, the community has not seen any research related to finding or exploring the relationship

between two design decisions. However, there are many researches that formalize and define

14

a meta-model to describe design decisions, which has helped in defining a process to identify

similarity between design decisions. One such model was already introduced in section 1.2.1,

chapter 1.

Few works have pondered as far as finding relations between the issues that are tracked using

software like Atlassian Jira, GitHub etc. Some the papers like "Who Should Fix This Bug?" by

John Anvik et al go as far as to categorize the text content of the issues and not venture into

defining relations between the issues itself [4 & 20]. Also, many papers treat this aspect of the

software architecture as classification problem [8] in the sense that they only deal with

classifying a design decision into a certain category based on information contained within the

design decisions. They do not explore possibility of relationship between the design decisions

within a single category. Few papers like “Automated Duplicate Detection for Bug Tracking

Systems” by Jalbert et al provide us hints for applying clustering for detection of the duplicate

documents.

The subsections following this one will discuss the contribution of few of the aforementioned

related works that this work was inspired from. The contributions in this chapter can be

categorized into types: Ones that contribute to extracting and identifying duplicate documents

and the ones that have applies machine learning to similar fields other than design decisions.

Section 2.2.

2.2 Dynamic Knowledge Model

Most organizations such as Apache and Mozilla support documentation of design decisions

using off the shelf issue tracking systems (ISMs) like JIRA or Bugzilla. These organizations

follow an agile approach in development of a software system. This means the software is

delivered with varying architecture as quickly as possible.

AKM framework developed by Bhat et al envelopes the important aspects of the software

engineering with respect to issue management systems. This framework thins the boundary

between issues and design decision, as the case is nowadays since the introduction to agile

methodologies. The dynamic model defined in the framework includes elements from aspects

of software project from domain, business, expert work force and activities involved. This is a

vital approach as architectural design decisions are influenced by various factors like

requirements, time available, human resources, project context and other past decisions. The

15

model was created after analysing the data models of specific issue management system

mentioned before. Hence, the model is reflective of modern issue management systems.

As mentioned in previous paragraph, the dynamic knowledge has imbibed within it the data

models of issue management systems and Hence, it is not only composed of the architecture

management concepts but also concepts of implementation, project management and

requirement management. The notion of architectural concern is being perceived differently in

this model compared to ISO definition seen earlier in section 1.2, (cf. Figure 2). Architectural

concerns are being regarded as requirements of a software system. It is safe to assume that

these are synonymous of each other. This notion is important as concern is more conceptual

term and requirement is a concrete description of a concern.

Figure 2 Dynamic Meta Model to capture AK as defined by Bhat et al. [3]

Notice in the meta-model that through the project context every issue can be traced back to one

or more requirements. The core concept of the dynamic knowledge model is Project that

includes essential attributes like such as name, description, etc. A project has multiple

requirements and architectural design decisions pertain to these requirements. From the

dynamic knowledge model, the following statements can be made:

16

• A Decision affects 1 or more Architectural Elements.

• A Decision is justified by 1 or more Architectural Rationale.

• A Decision is based on 0 or more Design Alternatives.

• A Decision depends on 0 or more other Decisions.

• A Decision pertains to one or more Quality Requirements.

The dynamic knowledge model is an instance of meta-model hence it can be adopted to project

needs at runtime.

The dynamic knowledge provides an abstract representation for both the issues and design

decisions and includes necessary elements, wherein the potential context for comparing design

decisions could lie.

2.3 Automatic Extraction of Design Decision from Issue Management

Systems

Previous section introduces the dynamic knowledge model as developed by Bhat et al. This

section describes how that model was used to build a system that automatically extracted design

decisions from the issue management systems. The system used machine learning based

approach to automatically detect design decisions from issues and to subsequently classify

them into three design decision categories, namely Structural, Behavioural and Ban decisions.

The labelled dataset resulting from this system has been made publicly available. Figure 3

describes the end-to-end workflow of the pipeline for extracting design decisions from issues.

Figure 3: ML pipeline for detecting design decisions and classification by Bhat et al [3].

 The pipeline was implemented using Apache Spark’s MLlib (machine learning library), which

provided interfaces to create and execute the pipelines. The pipeline with its configurations and

the generated model was eventually persisted as a Spark model instance in the AKM tool for

17

subsequent decision classification. That is, for automatic detection and classification of newly

created issues, this Spark model instance is executed, and the classification label is persisted in

the AKM tool.

Success of such a pipeline-based approach is evident in [10]and the authors have provided a

starting point from where the work of this paper takes off.

2.4 Automatic Duplicate Detection in Issue Tracking System

Deduplication of issues is one of the major challenges of organizations that track large number

of issues in day-to-day basis. Often, the deduplication process is manual in nature and requires

large investment of time by the developers. Jalbert et al in “Automatic Duplication Detection

for Bug Tracking System” [20] explored the application of clustering algorithms to

automatically detect and classify duplicate bug reports. The work used document clustering

using textual similarity to classify whether the bug reported is a duplicate or not. The work

provided the evidence required to prove that clustering techniques can be applied for textual

analysis. The key take-away from this work is that the semantic information is rich in textual

descriptions and summary of the issues.

18

Requirement Analysis and Experimental

Setup

This section describes experimental setup that helped in deriving requirements of the

workbench for identifying similar design decisions.

As first steps, 1574 issues were extracted from two popular open-source projects (Apache

Spark and Apache Hadoop Common) and manually labelled as either reflecting a design

decision (784) or not a design decision (790). The design decisions were described used tables

with columns and rows, rows representing a design decision and columns representing an

architectural concern they pertain to or architecture elements they affect.

Next, the tools for exploring the design decisions were researched and compared. Rapid Miner

(RM) studio and WEKA were evidently the most popular and robust tools for beginners to

experiment with machine learning techniques. They have workbench that helps users in

exploring applications of machine learning techniques. They both contain necessary set of

libraries and support materials required for exploring application of clustering algorithms to

identify similar design decisions. However, there are few differences that make WEKA a little

unfavourable for the thesis. First, WEKA require the data to be provide in ARFF. Secondly,

WEKA’s data import library was unable to extract design decisions and threw complex errors

that were difficult to debug. Finally, WEKA workbench UI is not user-friendly and has a steep

learning curve. Due to these reasons and due to the time constraints, a decision was made to

use RM studio for initial requirement analysis.

RM studio provides a canvas for designing workflows for data scientists. You can visually

create flows that determine how the data is consumed, transformed and have algorithm applied

on them to determine patterns in data. Helps in rapid prototyping to experiment with your

datasets. It also provides necessary visualization tools to view your results, which makes it

attractive for in depth analysis of clusters and similarity techniques. Building blocks of RM

studio are called Operators and a workflow of interconnected operators is called Process. RM

19

studio comes with many operators grouped by their functions, which makes it an ideal tool for

rapid prototyping and building quick experimental setup.

Before the dataset can be analysed, essential parts were needed to be extracted to only include

required context for the design decisions. This step was necessary to make sure that all the

semantically-rich elements of design decisions are included in the clustering analysis. To

determine which elements of design decisions have semantically-rich information, a model was

derived from the dynamic knowledge model introduced by Bhat et al [4] (cf. Section 2.2) and

is shown in figure 4.

Figure 4: a derived model from dynamic knowledge model

Section 2.2 & figure 2 gave an insight into the relationship between design decisions and the

other elements of the dynamic model. The derived model, with its indications of the type of the

information that present within it, aids in determining the elements that are rich in semantic

information. These elements and their concrete structures when included in the dataset provide

adequate material that represents the context of the design decisions. Additionally, they provide

the following important inferences that can be considered as the guidelines to detect the

similarity between design decision. Any two design decisions are similar if

• They affect 1 or more same architectural elements.

• They justified by 1 or more similar architectural rationale.

• They are based on same set of design alternatives.

• They depend on 0 or more other similar design decisions.

20

• They pertain to one or more similar quality requirements or architectural concern.

Using the above inferences, the corresponding the attributes of the issues were extracted and

the dataset was built. For instance, looking back at design decisions mentioned in Table 1, we

can infer that DD1 is similar to DD2 because they both affect component SQL, or DD1 is

similar to DD2 because they both share same set of concepts: Apache, SQL, and

Authentication.

Three initial experimental setups with RM studio had meant to reveal answers to two

challenges. 1) how to apply clustering analysis on textual data with missing attributes? 2) which

similarity measure are suitable for determining similarity between textual data?

RM studio provides parameters measure_types and mixed_measure. These parameters allow

users to specify the type of measure to user for the input dataset. For textual analysis, the

measure type must be mixed measure as design decisions may contain combination of textual

and categorical data. The mixed_measure parameter allows us to set the similarity measure to

use and this is set to ‘Mixed Euclidean Distance’, this is the only available option.

First setup was to iteratively apply a similarity measure to pairs of all design decisions. RM

studio provides an operator called “Data to Similarity” to execute this approach. The

parameters were set to type mixed measure and Mixed Euclidean Distance. The approach had

inconclusive results (see figure 5) as every design decision was found to be equidistance from

every other. The second approach was also inconclusive because it led to non-inform cluster

formations.

Second setup used K-Means with Mixed Euclidian measure. In this process, the leading design

decisions were initially assigned to a cluster each and consecutive design decisions were

assigned to the first cluster with exception of design decisions that had missing values. The

design decisions with either empty summary or empty description were grouped together in

their own clusters (see figure 6).

The initial experiments clearly revealed a necessity for application of pre-processing operations

on the design decisions like replacing missing value and removing punctuation on the datasets

the workbench should convert them into formats that is comparable by distance measures and

later for determining the similarity between them.

21

Final approach was to add pre-processing steps to the workflow right before distance

calculation. So, the datasets should be uploaded in particular format, pre-processed using some

natural language processing technique, converted to vectors for numerical representation and

clustering algorithm was applied to determine clusters of similar design decisions. This

workflow was particularly useful in classification of textual data as seen in previous works

mentioned in Section 2 and expressly seen in [10]. The workflow is especially useful when

here is a need to apply same set of pre-processing steps in both classification of design decisions

and to identify similarities between them. Results of this can be observed in figure 7,8 and 9.

Figure 5: Comparison of Design Decision directly using Mixed Euclidian Similarity Measure

The experimental setups discussed above helped in identifying the essential operations that

could be applied to the design decisions, the operations that make them readable for analysis

in clustering algorithms. Different capabilities of RM studio and WEKA aided in identifying

22

the initial set of requirements of a prototypical workbench that will allows end-user to identify

similar design decisions (cf. Chapter 4).

Figure 6: Results of comparing design decision directly using Mixed-Euclidian similarity measure

Figure 7: Sample clustering process from RM Studio

23

Figure 8 Sample pre-processing steps from RM Studio

Figure 9: Sample results from RM Studio

24

Requirements

This section lists the requirements gathered after the analysis of experiments conducted and

explained in Chapter 3. Apart from the results gathered from the experimental setup, the current

process and architecture of AKM framework developed by Bhat et al (cf. Section 2.3) and their

AKM tool AMELIE (cf. Appendix) were also analysed. Overall function of AMELIE is

described in figure 10. The AMELIE system imports issues from JIRA, extracts design

decisions from these issues, annotate the architectural elements in the extracted design

decisions, label the quality attributes that issues pertains to and provides recommendation for

new design decisions about experts.

The prototypical workbench implemented was made to fit well into the existing ecosystem of

the AMELIE and hence had to fulfil certain functional and non-functional requirements that

are described as follows:

Figure 10: AMELIE System Architecture

25

Requirement 1: Workbench must provide necessary tools to the user to

explore different clustering algorithms and similarity measures

The workbench shall be an exploratory web application in the sense it should be a web site that

allows users to create and reuse multiple experiments. The ability to create experiments by

input of different parameters by the users for exploring different clustering algorithms and

similarity measures.

Requirement 2: Workbench must be configurable

The workbench shall be configurable in the sense that a person holding a copy of the workbench

shall be able to spin off his own version of workbench by having an ability to turn on and off

the features of the workbench.

Requirement 3: Workbench must provide both a user interface and RESTful

APIs

End-users with the help of either a user interface or RESTful APIs should be able to create and

configure multiple experiments for clustering design decisions and to input new design

decisions to predict similar past decisions.

Requirement 4: Workbench must have the ability to automatically import

date from SocioCortex and AMELIE knowledge based

End-user should be able to link and import data from the entities and sub entities of the

SocioCortex and AMELIE Knowledge base.

Requirement 5: Workbench must be able to consume different data

formats

The workbench shall be able to consume more than one format of data like csv, json etc.

Requirement 6: Workbench shall abstract all operations related to

identifying similar design decisions

The operations configured by the end-users should run in background as a single batch. The

end-users see only the abstracted execution of the experiment and only see information that is

absolute for them.

26

Requirement 7: Workbench must provide reusable components

The workbench’s architecture should foster reuse of components. Following the object-

oriented approach, maximum classes and objects of the workbench shall made available for

reuse to extend the framework when deemed necessary by the end-user. Within the workbench,

it should be easy to integrate and to interchange foreign components. Any external libraries or

extensions written for the libraries shall be available in such way as to they can be switched

with other component of similar nature without effecting the readiness of the system.

Requirement 8: Workbench shall provide extensions point for integrating

multiple machine learning libraries

Many machine learning libraries exists now, and every end-user has his/her choice of weapon.

Workbench must encompass this philosophy into it and provide points or interfaces that allow

extending its capabilities.

27

Overview of Workbench Architecture

This section provides overview of workbench’s pre-requisites, process flow, and system

design. System design is discussed in the last part of this section to provide an easy mapping

between it and the fulfilled requirements.

5.1 Pre-requisites

As first steps, for a given project that maintains issues in an issue management system, the end-

users extract all the existing issues into an architectural knowledge management (AKM) system

AMELIE (c.f. Section 4, Figure 10). Next, the decision detector component of AMELIE

identifies those issues that reflect design decisions using a supervised machine learning (ML)

algorithm. For each identified design decisions, the end-user can proceed to store it back to

SocioCortex or AMELIE for future use.

The workbench is developed for the end-users to explore through the design decisions that have

already been made and recorded by them. The workbench assumes that the end-user has a new

design concern and wants to see if there exist other past decisions which have addressed this.

Before proceeding to use the workbench, the end-user must do following things

1. End-user shall use AMELIE to identify and extract all design decisions

2. The end-user shall know where the data is to be extracted from: does he/she wish to extract

from SocioCortex by linking the workspace and entities? or does he/she wish to upload the

data in a standard format like csv. (currently the workbench only supports csv data format

for uploading)

Provided the end-user has the design decisions, start training the workbench with few clicks

(c.f. Section 5.2).

5.2 Overview of Application Concepts

This section discusses the overall conceptualization of workbench and describes elements

defined within its architecture. The high-level overview of the process is shown in Figure 5.1.

28

Figure 11: User-centric process overview for training and predict similar design decisions

The workbench is implement based on the requirements that were mentioned in the previous

section. End-users will be provided with a web application that will help them explore through

their experiments through the concept of workflows. Workflows are automation of group of

tasks that are executed either sequentially or parallelly. Each user can create his own workflow

for exploring his/her design decisions.

The concept of workflows that are discussed here follow the convention defined by Apache

Spark ML library. Apache Spark ML Team defines workflows in a manner that is easy to adopt,

it provides a set of abstraction for understanding and applying machine learning algorithms and

pre-processing functions.

A typical standard machine learning workflow has following steps:

I. Data Ingestion

II. Features Extraction

III. Model Training

IV. Prediction

Following the Apache Spark convention, the pipeline’s key concepts are following

1. Pipeline

2. Pipeline Stage

29

3. Transformers

4. Estimators

5. Models

Pipeline

As discussed earlier, a Pipeline is a single workflow within the context of machine learning.

Creating a pipeline means defining stages of the user defined operations that are to be

performed on the design decisions. A pipeline consists of one or more Pipeline Stages.

Pipeline Stage

A Pipeline Stage represents a single stage in a pipeline and is an operation that is applied to

each of the design decision. A pipeline stage operation could a data transformation function

such as removing punctuations or applying a ML algorithm. A pipeline stage can either be a

Transformer or an Estimator.

Transformer

A Transformer is a pipeline component that transforms a document into another document after

applying some user defined function on it. User defined functions are usually applied to the

documents to prepare before a machine learning algorithm can work with it. An example of a

transformer would be a user defined function that changes all capital letters in the documents

to lowercase.

Estimator

An Estimator is a machine learning algorithm that learns from the documents, the processing

is known as fitting a model. An estimator produces a Model for a given set of documents and

parameters, which is then used to calculate predictions. An example of an estimator would be

K-Means clustering algorithm.

Model

The Model produced by an Estimator is a Transformer by itself that transforms the input

documents by adding predictions to them. The process of generating a model on applying a

learning algorithm is called as fitting the model. Depending whether the model was fitted

during the training phase or the prediction phase a model can either be Pipeline Model or

Prediction Model.

30

Every pipeline is an instance of typical ML workflow. A pipeline has one or more (usually

more than two) pipeline stages. A stage implements can a transformer (that can load data or

extract features) or an estimator (that performs ML). The design decisions fed by the user to

workbench are passed through each pipeline stage in the order defined. The outputs of a

pipeline execution are a model that can be used later for predicting similar design decisions

and a cluster table of design decisions.

5.3 User-Centric Pipeline Execution Flow

The entire process of training and identifying the similar design decision is divided into two

parts: Training and Prediction (which is detailed in the Section 5.3) and their corresponding

types of pipelines are known as Training Pipeline and Prediction Pipeline. As mentioned in

the section 5.2, pipelines are typical ML workflows and the workbench allows users to quickly

create, assemble and configure workflows that are instances of pipelines that can be executed.

At any point of time users can either create a new training pipeline that trains a pipeline model

or a new prediction pipeline, which is a pipeline created using an already trained model.

Figure 11 shows the process diagram that the user will follow to create and train pipelines.

Figure 5.3 shows the homepage of the workbench, which displays the workflow overview of

training and prediction pipelines.

Training Pipeline

In context of machine learning and in our application, training means generation of a model

that uses the existing design documents to learn patterns emerging within the design decisions.

The model transforms the input design decisions into a group of design decisions that are

assigned to clusters based on emerged patterns.

The created training pipeline follows the steps in training phase from figure 11 when it is

executed. End-user creates a pipeline with the necessary configuration. The workbench

currently supports creating a pipeline with following configurations: Name of pipeline, Library

to use, clustering algorithm to use, clustering parameters, selection of feature extractor and

uploading documents in some format or linking to a SocioCortex workspace. (see figure 13).

Once the user saves and runs the training pipeline following operations take place: The design

decisions are extracted from the provided file or linked workspace, transformations are applied

31

using specified library and configurations, a trained model is generated (eventually saves it)

and resulting clustered are display as table and graph.

Figure 12 Homepage of Exploratory Workbench for Document Clustering and Prediction

When creating a pipeline, end-user must choose the library he wants to use, transformations to

apply to the design documents, select ML algorithm and upload the design decisions. After the

design decisions are input and before the transformations are applied, the workbench will first

proceed to clean the data provided to it. The cleaning process involves digesting data using

multiple functions and this is called as pre-processing stage. The current pre-processing

functions applied by the workbench are concatenating all string attribute values, removing

punctuations and converting all string values to lowercase. After the pre-processing stage,

pipeline stages are executed. Once all the transformers are applied, marking the completion of

pre-processing stage, the design documents are ready to be fed to the machine learning

algorithm. Estimators are applied, and the Model is fitted (see figure 14). From here the

workbench proceeds further to transform example design decisions using the model generated

32

to obtain a pre-calculated set of clusters. The number of cluster is defined by the end-users.

These pre-calculated set of clusters provide us a smaller set of design documents to compare.

Prediction Pipeline

Prediction means transforming the given new design decisions using the model previously

obtained in the training phase and predicting a cluster label for the provided design decisions.

Prediction pipeline predicts the cluster that for the new design decisions falls under and

identifies decisions with similar context.

Figure 13 Page for Creating Training Pipeline

Figure 14 Training Pipeline Stages Example

33

A prediction pipeline follows the steps in prediction phase from figure 11 when it is executed.

In the prediction phase, user selects a previously trained pipeline to run with a new design

decision. (see figure 15 & figure 16). Once the prediction pipeline runs, it predicts the cluster

label for the given design decision. The cluster label is then used to retrieve past design

decisions that are part of the same cluster. Next, iterative comparison is made between each of

the past design decision with the new design decision using similarity measure cosine similarity

and Jaccard coefficient. This stage is the ranking stage. The result of the ranking stage consists

of degree of similarities, which can then be used to determine the top design decisions that are

similar (see figure 15).

Figure 15 Application Page showing a list of previously trained pipelines

34

Figure 16 Application page showing the selected pipeline and text area to add new design decision

5.4 System Architecture

This section outlines the design of the workbench, providing details of essential components

that make up the architect of the system.

The system is divided into three layers: Persistence, Middleware and Presentation. Persistence

layer handles the storing and retrieval from storage and has components specific to the type of

storage. The middleware layer handles the training design decisions and predicting results. The

presentation layer has views that are exposed to the end-users. The architecture is realized using

carefully chosen languages, and frameworks based on the requirements. Next sections will

discuss in detail the components and the roles of the components present within each layer in

detail. The overview of the complete architecture with its components is shown in figure 17.

Persistence Layer

The workbench uses two types of storage: the MongoDB and Physical filesystem. It uses

MongoDB component to communicate with a Mongo database. The MongoDB component is

responsible all storing and retrieving operation from the MongoDB. The workbench stores the

configurations of libraries (that it is extended with) and pipelines created by the user in

MongoDB. The trained models and results are stored within the physical filesystem.

35

Figure 17 System architecture of the workbench

Middleware

The middleware is the core of the workbench, where all operations are carried out. It is

composed of three main components and other supporting components: Predict, Train and

REST controller.

Training

Training components encapsulates the implementations of all tasks dealing with training the

pipeline. It has supporting components that allow clustering operations. It consists of a main

factory class that creates and stores pipeline configurations. The factory class creates objects

36

of the classes that implement interfaces of a training pipeline. a sample UML view as show in

figure 18. The IDataLoader interface is also provided to facilitate extending the framework to

add other format data handling.

Figure 18 Sample class diagram of training component

Predict

The predict component is responsible for all operation dealing with predicting the cluster label

for a new design decision and generating results containing similar design decisions. It consists

of a class that uses IDataLoader interface to load models and results into it. Its main component

is the Ranking component that applying similarity measures to the clusters and returns

percentage similarity between provided new design decision and the other cluster members.

Sample UML diagram of the Predict component is as shown in figure 5.9. Currently only cosine

similarity and Jaccard similarity are implemented.

REST Controller

All incoming requests are channelled to the middleware through this component. The REST

controller uses the defined routes to forward requests to the right component. The routes are

defined in a config file called routes.conf.

37

Figure 19 Class diagram of predict component

Presentation Layer

The presentation layer presents the users with a web-based interface that lets users train and

predict similar design decisions. The views have been implemented in AngularJS and

presents the user with necessary forms for training and predicting design decisions (c.f.

Section 5.3, figures 5.2 - 5.7).

Additional components apart ones mentioned in these layers exists. However, they have been

omitted to mention here as they are basic components are part of languages and frameworks

and thesis assumes its audience have basic language of these. Additional, documents required

for efficient handover are either provided in appendix or in code repository.

38

Review and Assessment of Requirements

This section will discuss the achieved requirements (c.f. Chapter 4) for the workbench.

Requirement 1: Workbench must provide necessary tools to the user to

explore different clustering algorithms and similarity measures

Requirement 1 has been achieved since user can explore many different options for clustering

using the workbench with help of pipelines. Users can create as many experiments as he/she

wants and run them.

Requirement 2: Workbench must be configurable

The workbench uses MongoDB and physical filesystem to store the configuration that it must

run with. Several configurations are available to adjust at any point of time to adjust the

workbench settings (can be found in the workbench code base). This requirement has been

covered.

Requirement 3: Workbench must provide both a user interface and RESTful

APIs

Requirement 3 is achieved by exposing both a UI and web services to the end-users. End user

can create and execute pipelines using the REST Methods provided. All necessary REST

methods are implemented and are available (c.f. Appendix C API Documentation).

Requirement 4: Workbench must have the ability to automatically import

date from SocioCortex and AMELIE knowledge based

This requirement specifies that end-user should be able to link and import data from the entities

and sub-entities of the SocioCortex and AMELIE Knowledge base. The requirement has ben

met and available in the workbench as discussed in Section 5.3 & 5.4.

Requirement 5: Workbench must be able to consume different data

formats

39

Due to the time constraints, the workbench has not been extended to support other data format

imports yet. However, adequate interfaces are to extend the framework with more data loader

components and classes. This requirement is marked incomplete and will be taken up as part

of future works.

Requirement 6: Workbench shall abstract all operations related to

identifying similar design decisions

With the help of pipelines, the end-users are hidden from the implementations and execution

of the training and prediction. End-user only has to concern himself with the design decisions

that he is feeding and nothing else.

Requirement 7: Workbench must provide reusable components

All components that are necessary throughout the application are added to separate directories

(corresponding to the library directory or parent directory) and are available as static classes

and methods. Requirement 7 has been marked as complete.

Requirement 8: Workbench shall provide extensions point for integrating

multiple machine learning libraries

Requirement 8 has been achieved by providing adequate interfaces and factory methods are

provided to facilitate extension of the workbench features.

Other than these high-level requirement, more function and non-functional requirements have

been recorded. A table of requirements is added to the appendix for reference.

40

Evaluation and Results

The traditional evaluation strategies for clustering involve splitting the datasets in to training

and testing datasets. The clustering model is trained on the training dataset and the evaluated

against training dataset. However, the use of clustering algorithm is to identify emerging

patterns and areas of concentrations for datasets. However, the workbench only provides users

with ability to create clustering models with their set of configurations. The purpose of the

workbench is to provide ability to run multiple experiments using end-user’s strategy and

integrate its results into his/her own AKM framework. For this reason, the thesis here employs

an evaluation strategy that simply answers the question: does such a workbench work? And

what are its additional benefits.

To evaluate the workbench to see if it gets relevant results, first, many sample datasets with

varying number of design decisions were required. The test datasets needed to be created which

contained mixtures of duplicated and related design decisions. Such test datasets were creating

by scheming through various open source projects and identifying design decisions within

them. Next, design decisions that affected other design decisions in different projects were

collected. The obtained datasets were mixed together other non-duplicates and irrelevant

design decisions. This was to evaluate if the workbench found other design decisions that are

could have been of interest. The datasets obtained were as follows: Two open source projects:

Apache Solr and Hadoop Commons, one dataset from AMELIE (already identified design

decisions from Apache Spark and Hadoop) and one dataset containing design decisions that

affect the SQL component of the underlying systems. Once the datasets were obtained, the

were fed to the workbench to train and to identifying similar design decisions. For predicting,

the description of a selected design decision (combinations of summary, descriptions and other

related attributes) was used. If the workbench, return itself and duplicates, the test was marked

as success. The following are evaluation steps,

1. Take a design decision

2. Obtain its relative context values (Summary, Descriptions, Keyword etc.)

3. Feed to predict pipeline

4. From results obtained, verify if its duplicates exist in the same cluster

5. Check its similarity index

41

The workbench was successful in returning the original design decision and duplicated with

high cosine similarity (~90% and above) and Jaccard similarity (~40% and around). Percentage

similarity for Jaccard Measure was found to greater than 60% for most duplicates. One

surprisingly additional benefit of the workbench was that it also clustered related design

decisions within the same cluster and ranked them with high similarities. This is taken as sign

of the novelty of the workbench. While most clustering algorithms to find areas of

concentrations and classification of the textual document, the workbench uses the clustering

algorithm with completed different purpose of identifying related and duplicate issues.

There could only limited evaluation of the workbench mainly due to the low number of design

decisions that have affects across projects and inadequate maintenance of the related issues.

Feedback from two industrials partners brought into highlight necessity for the workbench is

not just for identifying design decisions. It can also be used in recommending experts who

could handle new design decisions.

42

Conclusion

To summarize, the work here provided key insights into application of machine learning

algorithm for document clustering analysis combined with the power of similarity measures.

The conclusion is drawn based on success of the workbench in not only identifying duplicate

design decisions but also related ones. The workbench can also be used to reveal critical flaws

in process followed in documenting design decisions.

The requirements fulfilled by the workbench were analysed to see if it’s a feasible solution.

The workbench three additional benefits from a data engineer’s perspective: first, if developed

further, the workbench promises to be a single atomic tool all data analysis needs. Second, the

workbench framework can also be used for application of document clustering other than

design decisions. Third, the workbench exposes external APIs to consume its functions, which

most tools do not provide.

Success is but temporary for the workbench needs to develop further to make it a powerful

with ability to do supernatural things. The difficulty of implementing a workbench with can

cross function with different algorithms was not overlooked. No two ML library are the same.

One thing, they have different representation of the models and results. Given below are

concerns and reasons that provide insight into limitations of the workbench.

Why two documents within the same cluster could have a negative or zero value for

similarity measure?

Clusters are calculated by randomly picking a document to be represented as cluster centre and

all other documents are included in the cluster based on their distance calculated by some

distance measure from that centre. If a border is visualized around cluster, then the two

documents that you try to compare may be present near the opposite side of the border. They

belong to the same cluster, however, they are too far apart each other. Hence, they turn out to

be very dissimilar.

43

Problems with Jaccard Coefficient

Jaccard Coefficient calculates similarity for documents based on number of distinct words with

in the documents. So, as size of document increases, number of distinct words increases. More

distinct words between documents means that there are very less number of common terms

between them. Jaccard Coefficient becomes very small to imply that two documents are

dissimilar, however that might not be case if you look at the documents closely sometimes.

Few more reason why Jaccard Coefficient fails is due to existence of words that are rarely used

together such as words that are joined (ex. Class names, object variables) etc. there is set

defined way to separate out these kind of words as the way the words are joined may be on

purpose or my mistake.

You say workbench is customizable. Yet I see only one library, why?

• Configurable means here one can create a pipeline with any configuration

• Workbench is configurable in sense, we have laid down the foundation for you to

extend the workbench with multiple libraries. A clear defined flow is present with good

UI.

• Libraries with come with their own set of limitations: Have their own way to defining

results, tailoring them to fit the result into a generic one takes a lot of time. Hence, I

decided to concentrate on a single library but to build at least a complete Clustering-

Prediction workflow.

Why Spark?

• Open Source, no license issues unlike Rapid Miner

• Spark consists of its own SQL library, meaning SQL syntax for easy data operations,

retrieving datasets, selecting rows etc.

• Apply iterative operation on all rows without too many for loops

Limitations with Spark

Spark library does not have any implementation of stemming, but good news is that the

workbench can be extended to include your own version of stemming.

44

Bibliography

[1] Managing architectural decision models with dependency relations, integrity constraints,

and production rules by Olaf Zimmermann, Jana Koehler,Frank Leymann, Ronny Polley and

Nelly Schuster, 2008.

[2] ISO/IEC/IEEE 42010:2011,Systems and software engineering - Architecture description,

the latest edition of the original IEEE Std 1471:2000,Recommended Practice for Architectural

Description of Software-intensive Systems (www.iso-architecture.org/ieee-1471/cm/).

[3] Manoj Bhat, Klym Shumaiev, Andreas Biesdorf, Uwe Hohenstein, Michael Hassel, and

Florian Matthes. 2016. Meta-model based framework for architectural knowledge

management. In Proccedings of the 10th European Conference on Software Architecture

Workshops (ECSAW '16). ACM, New York, NY, USA, Article 12, 7 pages.

[4] John Anvik, Lyndon Hiew, and Gail C. Murphy. 2006. Who should fix this bug?. In

Proceedings of the 28th international conference on Software engineering (ICSE '06). ACM,

New York, NY, USA, 361-370.

[5] Olaf Zimmermann, Christoph Miksovic, and Jochen M. KüSter. 2012. Reference

architecture, metamodel, and modeling principles for architectural knowledge management in

information technology services. J. Syst. Softw. 85, 9 (September 2012), 2014-2033.

[6] Jansen, Anton; Bosch, Jan -Software architecture as a set of architectural design decisions,

Software Architecture, 2005. WICSA 2005. 5th Working IEEE/IFIP Conference on 109-120,

2005, IEEE.

[7] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, and M. A. Babar. A comparative study of

architecture knowledge manag. tools. J. of Syst. and Soft., pages 352-370, 2010.

[8] Slimani, Thabet. (2013). Description and Evaluation of Semantic Similarity Measures

Approaches. International Journal of Computer Applications. Vol 80. 25-33. 10.5120/13897-

1851.

[9] Grady Booch, Architecting the unknown, Saturn 2016

[10] Bhat, Manoj & Shumaiev, Klym & Biesdorf, Andreas & Hohenstein, Uwe & Matthes,

Florian. (2017). Automatic Extraction of Design Decisions from Issue Management Systems:

A Machine Learning Based Approach. 138-154. 10.1007/978-3-319-65831-5_10.

[11] Levy, Omer and Yoav Goldberg. “Dependency-Based Word Embeddings.” ACL (2014).

http://www.iso-architecture.org/ieee-1471/cm/

45

[12] From Wikipedia, the free encyclopedia: https://en.wikipedia.org/wiki/Word2vec

[13] Mikolov, Tomas & Chen, Kai & Corrado, G.s & Dean, Jeffrey. (2013). Efficient

Estimation of Word Representations in Vector Space. Proceedings of Workshop at ICLR. 2013.

[14] Bosch J. (2004) Software Architecture: The Next Step. In: Oquendo F., Warboys B.C.,

Morrison R. (eds) Software Architecture. EWSA 2004. Lecture Notes in Computer Science,

vol 3047. Springer, Berlin, Heidelberg

[15] Kruchten, Philippe. (2004). An Ontology of Architectural Design Decisions in Software-

Intensive Systems. 2nd Groningen Workshop on Software Variability.

[16] J. Tyree and A. Akerman, "Architecture decisions: demystifying architecture," in IEEE

Software, vol. 22, no. 2, pp. 19-27, March-April 2005.

[17] Antony Tang, Paris Avgeriou, Anton Jansen, Rafael Capilla, and Muhammad Ali Babar.

2010. A comparative study of architecture knowledge management tools. J. Syst. Softw. 83, 3

(March 2010)

[18] Perry, D. E.; Wolf, A. L. (1992). "Foundations for the study of software architecture".

ACM SIGSOFT Software Engineering Notes. 17 (4): 40.

[19] Manning, Chris, and Hinrich Schütze, Foundations of Statistical Natural Language

Processing, MIT Press. Cambridge, MA, May 1999

[20] N. Jalbert and W. Weimer, "Automated duplicate detection for bug tracking systems,"

2008 IEEE International Conference on Dependable Systems and Networks With FTCS and

DCC (DSN), Anchorage, AK, 2008, pp. 52-61.

[21] Saimadhu Polamauri, April 2015, “Five most popular similarity measures implementation

in python, https://dataaspirant.com/2015/04/11/five-most-popular-similarity-measures-

implementation-in-python/

https://en.wikipedia.org/wiki/Word2vec
https://dataaspirant.com/2015/04/11/five-most-popular-similarity-measures-implementation-in-python/
https://dataaspirant.com/2015/04/11/five-most-popular-similarity-measures-implementation-in-python/

46

Appendix

A. Use Case Scenarios

Use Case ID UC1

Use Case Name Create Pipeline

Actors Architects, Developers, Data Engineers

Description User accesses the workbench and views the create pipeline page

of the workbench. A form is presented to the user to input the

required configuration of the pipeline. User is provided a "save

& run" to create and execute the pipeline

Preconditions 1. User has navigated to create pipeline page using the top

navbar provided

Postconditions 1. System has stored the pipeline configuration to database.

2. System has stored the trained model.

3. System has stored the cluster results

4. User is presented with cluster graph

Normal Flow 1. User navigates to Workbench URL

2. User click on "Create Pipeline" in the Navbar provided at top

3. User enters the pipeline name

4. User selects library

5. User selects ML algorithm to use

6. User selects transformer to use

7. User clicks on "Browse" button

8. User selects the file he wants to upload

9. User click "Upload" button

10. User selects data format option

11. User clicks on "save & run" button

Alternate Flow 7a. In Step 7, User has the option to link SocioCortex

workspace.

1. User clicks on "Link to SC Workspace" button.

2. User provides a filename with extension

3. User selects the workspace from drop down

4. System displays all the available entities from SC

5. User selects an entity of the workspace

6. User selects multiple mining attributes

8a. Step 8 is skipped

Assumptions 1. User has already extracted the design decision using

AMELIE

47

Use Case ID UC2

Use Case Name Visualize Pipeline

Actors Architects, Developers, Data Engineers

Description User accesses the workbench and views the visualize page of the

workbench. A table is presented to the user listing all available

trained pipelines. On select a pipeline, user is redirect to a page

that load cluster graphs and cluster table.

Preconditions 1. User has navigated to visualize page using the top navbar

provided

Postconditions 1. System displays user two sections: Cluster Table and Cluster

Graph

2. System allows user the ability to expand and collapse part of

the graph

Normal Flow 1. User navigates to Workbench URL

2. User click on "Visualize" in the Navbar provided at top

3. System displays a table of previously trained pipelines

4. User selects a pipeline

5. System redirects user to a page containing cluster table and

cluster graph

Assumptions 1. User has already extracted the design decisions using

AMELIE and trained a pipeline use those design decisions

48

Use Case ID UC3

Use Case Name Predict Pipeline

Actors Architects, Developers, Data Engineers

Description User accesses the workbench and selects one of the previously

trained pipeline that he wants to predict results from. User is

redirect to page containing text, where he provides the

description of the design decision. Once user runs the predict

pipeline, user displayed a table of similar design decisions

Preconditions 1. User has navigated to cluster documents pipeline page using

the top navbar provided

Postconditions 1. System displays to user a table of similar design decisions

Normal Flow 1. User navigates to Workbench URL

2. User click on "Cluster Documents" in the Navbar provided at

top

3. System displays a table of previously trained pipelines

4. User selects a pipeline

5. System redirects user to a page containing a text area

6. User inputs the description of a new design into the text area

7. User clicks on “predict” button

Assumptions 1. User has already extracted the design decisions using

AMELIE and trained a pipeline use those design decisions

49

B. Requirements Specifications

Requirement

ID

Title Description Type Priority

R1 Interface for

creating pipelines

System should

provide user a form

that allows them to

create their own

pipelines with their

choice of library and

algorithms.

Functional 1

R2 API for creating

pipelines

System should expose

a POST Method to

create pipelines

Functional 1

R3 Interactive graphs System should

provide graphs to

visualize the pipeline

executions results at

anytime

Functional 2

R4 Expand/collapse

facility for view

design decisions

System should

provide within the

graph an expand or

collapse capability to

view cluster members

and design decisions

Functional 3

R5 List all trained

pipelines

System should

provide a list of

previously trained

pipelines for

visualization and

predicting

Functional 1

50

R6 Graph with non-

redundant words

with in design

decisions

System should present

to the user the list of

non-redundant words

within a design

decision.

Functional 3

R7 Interface to

predict

similarities

System should present

the user with a form to

enter a new design

concern and

predicting similarity.

Functional 1

R8 API to predict

similarities

System should expose

a POST to the user, to

which he/she can give

a pipeline name and

input design decision.

Results should be

returned to be in json

format

Functional 1

R9 Interface to view

predict results

After running

prediction, System

should mention the

cluster the design

decisions falls under

and display a table

with calculated

similarities

Functional 2

R10 Order in

prediction results

System should display

the similarity results

in descending order of

one of the similarity

measure

Functional 2

51

R10 homepage of the

workbench

System should have a

homepage that

presents user with the

overview of the

process

Non-

Functional

3

R11 API for retrieving

clusters

System should expose

a GET method to

retrieve previously

trained pipeline

clusters

Functional 2

R12 API for retrieving

previously trained

pipelines

System should expose

a GET method to

retrieve previously

trained pipelines

Functional 2

R13 API for libraries System should expose

a GET method to

retrieve workbench’s

current configurations

Functional 2

R14 Interface to Link

to SC

System should

provide necessary

forms to link and

import data from SC

Functional 1

R15 Interface to

upload design

decisions

System should

provide necessary

form elements to

upload a dataset with

design decisions in

certain format

Functional 1

R16 Cluster table view System should present

users with cluster

tables with member

count within each

cluster

Functional 3

52

R17 Navbar System should

provide a bar on top

for users to navigate

to pages

Functional 3

53

C. API Specifications

Title Method Path Parameters

Get all

libraries

GET /clustering/libraries None

Get all

pipelines

GET /clustering/pipelines/ none

Get a

pipeline

GET /clustering/pipeline/:

pipelineName

pipelineName: String

Get all

cluster of a

pipeline

GET /pipeline/clusters/:pi

pelineName

pipelineName: String

Create

pipeline

POST /clustering/pipeline/c

reate

Cluster Pipeline Object that contains

following

1. Name of pipeline: String

2. library code: Number

3. algorithm code: String

4. transformers: Object

5. dataset values or minning attrbiutes

from SC: String or Array of Strings

Predict

Similarities

POST /clustering/pipeline/p

redict

1. textToclassify: String

2. pipelineName: String

54

D. Abbreviations

AD – Architectural Description

ADD – Architectural Design Decisions

AKM – Architectural Knowledge Management

AMELIE - Architecture Management Enabler for Leading Industrial software

ML – Machine Learning

SC – SocioCortex

URL – Uniform Request Locator

MLlib – Machine Learning library

