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Abstract 

Software architecture is a set of high level descriptions or structures that talk about a software 

system. These structures are required to reason about system design and decisions. Architects 

and developers regularly make decisions to address stakeholders’ concerns during the 

realization of software systems. Hence, explicitly capturing architectural design decisions as a 

part of architectural knowledge management is becoming increasingly important in firms 

providing professional Information Technology (IT) services.  

Large organizations or software projects usually have large number of designs decisions. Often 

these decisions are similar in nature. However, since the decisions made are seldom shared 

within an organization, knowledge vaporization occurs. Due to this, reuse of past knowledge 

to make new sustainable decisions. Furthermore, development of techniques that feasible for 

deriving similarities between design decisions is a challenging task. Application of clustering 

algorithms have helped paved way in solving many such challenges, for example, identifying 

duplicates. Hence, considering this problem to fall under the same domain, the thesis will 

provide a platform for architects and developers to explore the challenge. 

The work here will present a prototypical implementation of a web-based workbench for 

exploring the use of clustering algorithms and similarity measures to derive similar design 

decisions in the scope of a single project or multiple. The thesis will provide the necessary 

information and discuss the need for finding similarities in detail. Moreover, the work here will 

be using open sources projects that are industrially significant to test the workbench, evaluate 

the results and provide its limitations.  
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Introduction and Theory 

Over the past few years, the software research community has emphasized on need for 

capturing and sharing elements of software architectural knowledge(AK) and design decisions. 

One of more recent challenges that researchers are looking to tackle is to prevent vaporization 

of knowledge related to design decisions. Lately, several meta-models have emerged to 

efficiently capture and manage design decisions. Many architectural knowledge management 

(AKM) tools use these meta-models to support decision-makers in documenting design 

decisions. AKMs help in making implicit knowledge residing within a software architecture 

explicit. As software architecture evolves, the focus is on reusing past design decisions to make 

new sustainable decisions.   

1.1 Motivation  

In large software-intensive projects, there are multiple personnel that sustain impairments in 

terms of time and effort due to analysis of problems that are similar in nature. Software 

architects and developers often come across scenarios where they must make similar decisions 

as in the past to address similar design concerns. Lacking awareness of past decisions, 

architects and developer incur losses in terms of time and money invested when a new design 

concern arises. The solutions that could be applied across projects are not shared.  

In comparing new design concerns with the explicit knowledge from old design decisions, 

decision-makers can reduce analysis time by inferring details from past decisions. There is a 

reduction in the time for resolving a new design concern because the turnaround time is also 

reduced when constraints and design rules are already known.  

For instance, Apache Spark is a large opensource software project with more than 20,000 issues 

that have been captured in an issue management system since early 2014. Much of these issues 

can be classified as design decisions as they affect the architecture of Apache Spark software. 

Consider two such design decisions as shown in Table 1. First design decision, DD1, is a 

decision reflecting a change in the functionality of the system and was created in June 2015. 

Unaware of the existence of DD1, a similar request DD2 in Table 1 was made in February 2017 

in spite of developers having already discussed and closed DD1. DD2 was discussed and 

resolved in March 2017.  
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Ref ID DD1 DD2 

Issue# SPARK-8321 SPARK-19625 

Description Authorization Support (on all 

operations not only DDL) in 

Spark Sql 

Authorization Support (on all 

operations not only DDL) in 

Spark Sql version 2.1.0 

Concepts Apache, SQL, authentication  Apache, SQL, authentication  

Keywords Spark, operations, Support, 

Authorization 

Spark, operations, Support, 

Authorization 

Components SQL Spark Core, SQL 

Issue Type Improvement Improvement 

Created Date 12/Jun/15 03:34 16/Feb/17 09:36 

Resolved Date 16/Jun/16 08:22 24/Mar/17 01:21 

Table 1 Example design decisions from Apache Spark project 

 

By looking at various attributes of these two decisions, it is evident that they are similar in 

many ways. They both influence the same set of components: Spark Core and SQL. They are 

both related to same three concepts: Apache, SQL and Authentication. They have a similar 

description of an improvement. However, the issues raised are approximately a year and half 

apart by people with no apparent connection and from different locations.  DD2 was resolved 

as a duplicate of DD1 after a month of discussion. It would have been helpful for the second 

reporter to have knowledge existence of DD1.  

It is clear to see, documenting and sharing architectural design decisions will help architects 

and developers be aware of past decisions (cf. 2, 3, 9). Documentation helps them in specifying 

design rules. It also helps them to derive relationship between design decisions and represent 

them using standard notations such as UML diagrams or directed graphs. These representations 

form vital means of communication. By using common visual representations, one can then 

derive complexity involved for addressing similar design concern.  

The architects and developers, during the decision-making process, want more information. 

The information that will help them consider all necessary elements to develop a fault-free 

maintainable software. This work is motivated by need for making every member of an 

organization aware of past decisions and avoiding losses mentioned before.  

https://issues.apache.org/jira/browse/SPARK-8321
https://issues.apache.org/jira/browse/SPARK-19625
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Recent success in using clustering algorithms in the fields of duplicate detection have lead to 

them be considered in other areas of pattern recognition. The application of the clustering 

algorithm and similarity measure to detect similar design decisions is a relatively new approach 

in the domain of software architecture decision-making. Due to lack of previous work in this 

domain, there is a need for a tool that supports automatic identification of similar design 

decisions. The primary contribution of this work is to provide a prototypical implementation 

of a workbench that will help architects and developers explore clustering algorithms and 

similarity measure for identifying similar design decisions. 

 

1.2 Background  

1.2.1 Architectural Design Decisions 

This section introduces ISO/IEC/IEEE standard model that defines elements of design 

decisions.  

In the 5th Working IEEE/IFIP Conference on Software Architecture (WICSA'05) 2005, Bosch 

and et. al. introduced to the software architecture community a different perspective on 

software architecture. They defined software architecture as “a set of architectural design 

decisions”. [6].  

Grady Booch had the following to say about architectural design decisions in his keynote 

speech at Saturn 2016 Conference “Architecting the Unknown” - "In software engineering 

and software architecture design, architectural decisions are design decisions that 

address architecturally significant requirements; they are perceived as hard to make and/or 

costly to change”. [9] 

Informally, an Architecture Design Decision is any description that talks about changes to the 

system, why those changes were made, what behaviours are not allowed and what behaviours 

are mandatory.  

Architectural design decisions are influenced and impacted by the NFRs: Non-Functional 

Requirements of a software systems. They either concern one or more parts of the system or 

the whole system itself.  Each architectural design decision has a description of design concern 

which is architecturally significant for a software system. Several possible solutions exist for a 

design concern and Select one of the alternatives in decision-making process.  



4 

 

Currently there are number of models that have been standardized and that define a software 

architecture as a set of design decisions. Figure 1 shows the conceptual model of Architectural 

Design Decision and Rationale as standardized in ISO/IEC/IEEE 42010:2011. The work here 

will use this model to provide an overview of design decisions and concepts associated with it. 

However, this is used only to understand design decisions and it contributes to this work 

partially. Later in this work, more models will be discussed to understand on deeper levels.  

 

The conceptual model defines three important concepts: Architectural Rationale, Concern and 

AD Element. It also defines all the logical associations between each of them. 

AD Element -   Any item of a software architecture is considered Architecture Description(AD) 

Elements. It is recursive definition in the sense that any item that is part of AD element is also 

consider an AD Element. The changes to a software architecture are nothing but operation that 

lead to adding, removing or updating the AD Elements.  

Concern -  Any interest in the system is the “concern” of that system. Examples include purpose 

of the system, its behaviour, requirements, functionality etc. a design decision pertains to a 

concern and affects one or more AD Elements. New Concerns may raise by making a design 

decision.  

Architecture Rationale - The justification, or explanation pertaining to design decisions are 

within the scope of Architectural Rationale. It records why a decision was made and provides 

a motive for discarding alternative. 

Figure 1: Conceptual model of Architecture Decisions & Rationale as per ISO/IEC/IEEE 2010:2011 Standard. 

Figure 1 Conceptual design decisions model by ISO 
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1.2.2 Introduction to Document Clustering Algorithms 

This section briefly outlines clustering as a technique for finding similarity, similarity measures 

that are integral for this work. The parts of this section refer to the supplied information to be 

processed by the algorithms as “documents” and the characteristics of the documents as 

“features”. However, within the scope of this thesis, the term “document” refers to a design 

decision and it is used only for purpose of providing generic definitions.  

Clustering 

Cluster analysis or clustering is the task of grouping a set of documents called as clusters. 

Documents in a cluster are closer to each other than to those in other clusters. This is a very 

common technique used for recognizing patterns within a set of documents. Various clustering 

algorithm exists. This works main interest lies in k-Means and Bisecting k-Means clustering, 

which are discussed in the next sub sections.  

Hierarchical Clustering 

This is a clustering technique that aims to partition your documents into a hierarchy of clusters. 

There are two strategies in hierarchical clustering: a) Start with each document in its own 

cluster and merge pairs of them when moving up the hierarchy. b) Start with all documents in 

one cluster and perform splits recursively when moving down the hierarchy.     

k-Means Clustering 

This is a clustering technique that aims to partition your n document instances into k clusters 

in which each document belongs exclusively to one cluster with nearest mean distance to it. 

the k-Means algorithm finds groups within documents with number of groups defined by k. 

The algorithm works iteratively to assign each document to one of k document groups based 

on the attributes that are provided. Data points are clustered based on feature similarity.  k-

means accepts a distance function that it uses to calculate the distance between a chosen cluster 

centre and a document. The distance function is applied iteratively to all documents in the 

dataset until all documents belong to a document group or cluster. 

Bisecting k-Means 

Bisecting k-Means is much like a combination of a hierarchical clustering and k-Means 

clustering. It first applies k-Means algorithm to create two clusters. This step is called the 
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“Bisecting” step. It then iteratively repeats the bisecting step and produces more splits and 

performs all the steps again until desired number of clusters k is reached. 

Document Clustering 

Application of clustering algorithm to textual documents is known as Document Clustering (or 

text clustering). This type of clustering technique involves use of bag of words that describe 

the contents of the documents known as descriptors. Extraction of the descriptors involve use 

of many pre-processing operations like tokenization, removal of stop words, stemming etc.  

Most common use of document clustering is for grouping similar documents such as tweets, 

news feeds or web context, into meaningful categories list. 

k-Means (and its variants) and hierarchical clustering are especially popular for their uses in 

document clustering. These algorithms can further be classified as hard or soft clustering 

algorithms. Hard clustering computes a hard assignment meaning each document is a member 

of exactly one cluster. In soft assignment, each document’s assignment is a distribution over 

all cluster. In soft assignment, a document has fractional membership in several clusters [19]. 

In practice, application of document clustering usually involves following steps to be executed 

sequentially 

1. Tokenization  

Tokenization is the process of breaking down a document into smaller units called tokens such 

as words and phrases. Documents are input to a tokenizer, a program that performs 

tokenization. Tokenizers identify tokens using methods like regular expressions, flagging, 

separating sequences using delimiters like comma and semi-colons. This process is called 

tokenizing. Popular methods of tokenizing are bag-of-words, n-gram model and word2vec.  

2. Stemming and Lemmatization  

To avoid repeated calculation of similar information, we reduce all tokens to their base forms 

and then group them. This means reducing words to their root forms. For example, grasping to 

grasp. These processes are called as Stemming (reducing inflected words to their base form) 

and Lemmatisation (grouping inflected words together).  
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3. Removing stop words and punctuation 

Stop words are tokens are trivial words that do not reveal additional characteristics of a text. It 

is a good idea to eliminate such words and punctuation marks as they are not very useful for 

analysis. 

4. Feature extraction or generation  

After Step 3, it is safe to assume that the remaining tokens distinctly reveal characteristics of 

the documents. These tokens now must be processed in some way to generate features that 

clustering algorithm can work on. In context of this work, features are derived values that 

promises to be non-redundant and informative.  

5. Clustering  

After the features are extracted from the tokens, they can now be fed to clustering algorithms 

for forming meaningful clusters.  

6. Evaluation and Visualization 

Finally, the clustering models can be assessed by various metrics such f-measure to evaluate 

its performance and accuracy. It is sometimes helpful to visualize the results by plotting the 

clusters into low dimensional space. 

This ends our introduction to basics of clustering methods and procedure.  

1.2.3 Introduction to Word2Vec 

Clustering algorithm like k-Means typically require the text input to be represented as a fixed 

length vector. This kind of representation is very central to natural language processing.  The 

representation of words as sparse vectors derived using training models in neural networks are 

called word embeddings. Word2vec tool is a collection of connected models that are used to 

produce word embeddings. These models are shallow, two-layer neural networks that are 

trained to reconstruct contexts of words. Word2vec takes as its input a large corpus of text and 

produces a vector space that typically several hundred dimensions in size. Each unique word 

in the corpus is assigned to a corresponding vector in the space.  

Word vectors are positioned in the vector space such that words that share common context in 

corpus are next to one another. [12]. Word2vec creates vectors that are distributed numerical 

representations of word features. It does so without human intervention. 
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Given enough data, usage and contexts, Word2vec can make highly accurate guesses about a 

word’s meaning based on past appearances. Those guesses can be used to establish a word’s 

association with other words e.g. “man” is to “boy” what “woman” is to “girl” or “man” is to 

“king what “woman is to “queen”. It can also be used to cluster documents and classify them 

by topic. Those clusters can form the foundation of search, sentiment analysis and 

recommendations in diverse fields of scientific research, legal discovery, e-commerce and 

customer relationship management. 

1.2.2 Introduction to Semantic Similarity and Similarity Measures 

This section will introduce you to what semantic similarity is and detail some distance 

functions or similarity measures that are used in determining it.   

Semantic Similarity  

Semantic similarity is a metric defined over a set of documents or terms, where the idea of 

distance between them is based on the likeness of their meaning or semantic content as opposed 

to similarity which can be estimated regarding their syntactical representation. These are 

mathematical tools used to estimate the strength of the semantic relationship between units of 

language, concepts or instances through numerical descriptions obtained. 

Similarity is subjective and is highly dependent on the domain and application. For example, 

two fruits are similar because of colour or size or taste. Care should be taken when calculating 

distance across dimensions or features that are unrelated. The relative values of each element 

must be normalized else one feature could end up dominating the distance calculation. 

Similarities are measured in the range 0 to 1 [0,1].  

Similarity Measures  

A Similarity Measure is the measure of how much alike two data objects are. Similarity 

measure in context of data mining is a distance between points of dimensions representing 

features of the objects. If this distance is small, it will be the high degree of similarity where as 

a large distance will be the low degree of similarity. 

A similarity measure is also known as Similarity Function which is a real-valued function that 

quantifies the similarity between two objects. Although no single definition of a similarity 

measure exists, usually such measures are in some sense the inverse of distance metrics: they 
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take on large values for similar objects and either zero or a negative value for very dissimilar 

objects.  

There two important aspects of the similarity measure that are of used in this thesis viz.  

1. Similarity between two documents or document Vs query terms: A similarity 

measure can be used to calculate similarity between two documents, two queries, or 

one document and one query.  

2. Document Ranking: similarity measure score can be used to rank how which 

documents are more similar than others.  

All clustering algorithms use similarity or so called “distance functions” to determine cluster 

members. Few of the most popular similarity measures are discussed in the following 

subsections. 

Euclidian Distance 

It is a standard metric for geometrical problems. It is the ordinary distance between two points 

and can be easily measured with a ruler in two- or three-dimensional space. Euclidean distance 

is widely used in clustering problems, including clustering text. It is also the default distance 

measure used with the K-means algorithm. Measuring distance between text documents: given 

two documents, da and db represented by their term vectors ta and tb respectively. The Euclidean 

distance of the two documents is defined as: 

 

Where, the term set is T = {t1, t2,..….., tn}In this calculation Wt,a = tf-idf(da, t) 

Euclidean distance is the most commonly used distance function. In most cases when people 

talk about distance, they will refer to Euclidean distance.  

Manhattan Distance 

Manhattan distance is a metric in which the distance between two points is the sum of the 

absolute differences of their Cartesian coordinates. In a simple way of saying it is the total sum 

of the difference between the x-coordinates and y-coordinates. 

Suppose we have two points A and B if we want to find the Manhattan distance between them. 

We just have to sum up the absolute x-axis and y-axis. variation means we have to find how 
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these two points A and B are varying in X-axis and Y- axis. In a more mathematical way of 

saying Manhattan distance between two points measured along axes at right angles. 

In a plane with p1 at (x1, y1) and p2 at (x2, y2), Manhattan distance = |x1 – x2| + |y1 – y2| 

This Manhattan distance metric is also known as Manhattan length, rectilinear distance, L1 

distance or L1 norm, city block distance, taxi-cab metric, or city block distance. 

Cosine Similarity 

Cosine similarity is a measure of similarity between two vectors of an inner product space that 

measures the cosine of the angle between them. Cosine similarity metric finds the normalized 

dot product of the two documents. By determining the cosine similarity, we would effectively 

try to find the cosine of the angle between the two documents. The cosine of 0° is 1, and it is 

less than 1 for any other angle. 

It is thus a judgement of orientation and not magnitude: two vectors with the same orientation 

have a cosine similarity of 1, two vectors at 90° have a similarity of 0, and two vectors 

diametrically opposed have a similarity of -1, independent of their magnitude. 

Cosine similarity is particularly used in positive space, where the outcome is neatly bounded 

in [0,1]. One of the reasons for the popularity of cosine similarity is that it is very efficient to 

evaluate, especially for sparse vectors. 

Jaccard Coefficient 

Jaccard Coefficient is applied to when you want to find similarity between two objects that are 

sets. It is used to measure similarity between sets, and it can be calculated by dividing the size 

of the intersection by the size of the union of the sets. 

A set is (unordered) collection of objects {a, b, c}. The notation of elements separated by 

commas inside curly brackets {} is used for sets. They are unordered so {a, b} = {b, a}. 

Cardinality of a set A, denoted by |A|, is the count of number of elements in A. Intersection 

between two sets A and B is denoted A ∩ B and reveals all items which are in both sets A, B. 

Union between two sets A and B is denoted A ∪ B and reveals all items which are in either set. 

The Jaccard Coefficient measures the similarity between finite sample of sets and is defined 

as the cardinality of the intersection of sets divided by the cardinality of the union of the 

sample sets. Suppose you want to find Jaccard similarity between two sets A and B it is the 

ration of cardinality of A ∩ B and A ∪ B. Jaccard Similarity: J (A, B) = A ∩ B/ A ∪ B 
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1.3 Research Questions 

In this section of the thesis the main research questions that are to be answered are deliberated. 

Each subsection of the research question will outline the problem domain and provide an 

approach which will be elaborated in span of the thesis.  

 

What are the functional and non-functional requirements of a workbench that supports 

in identifying similar design decisions?  

Existing systems are analysed in the later part of the thesis to determine what makes a system 

that supports identifying similarities between design decisions. Important questions such as 

what the drawbacks of the existing systems are, how does the workbench overcome these 

drawbacks and additional purposes that are fulfilled by the workbench are discussed. 

 

How to identify similar design decisions using context-aware similarity measures and 

clustering analysis? 

Direct comparison of the design decisions is not possible due to its textual nature and presence 

of large number of strings. Within this thesis, use of operations that transform design decisions 

into representations that can be used by similarity measures and clustering algorithms are 

discussed.  

 

How can a workbench support end-user in identifying the contextual parameters that are 

necessary for identifying similar design decisions? 

Design decisions need to be broken down to smaller parts that convey its architectural 

description. Only parts that include context information are kept and others discarded. 

Identifying what parts to be used to identify similarities is of vital importance. Context include 

a precise knowledge contained within the design decision. The thesis provides a brief reasoning 

for using only certain parts of the design decision to identify the information contained in it.  

This question deals with choosing the right similarity measure to compare design decisions. 

Choice of similarity measure should also be based on the efficiency of the similarity measure 

in calculating the similarity in context of software architecture. 
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1.4 Organization of Thesis 

Given sufficient motivation behind the topic, necessary background information and the 

research questions that are going to be answered, the thesis will move to the section to discuss 

the previous works in the field that have influence the topic. The subsequent chapters are 

organized as follows: Chapter 3 will provide detailed explanation of experimental setup. 

Chapter 4 provides an overview of elicited requirements of prototypical implementation of the 

workbench. In Chapter 5 demonstrates how the prototype has been developed, challenges faced 

and what are its limitations. Chapter 6 provides evidence of usefulness of the workbench for 

not only identifying similar design decisions, but also expresses the surprise of additional 

benefits of obtaining relationship between them. Finally, the thesis will conclude by 

summarizing the work, mentioning few lessons learnt and providing a future outlook on 

revision of workbench and clustering techniques used here.   
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Related Works 

 

This section of the thesis brings to the attention two things: First, a view of evolution of the 

software architecture models with the lack of information on relationship between design 

decisions. Second, it summarizes the previous works in the field and how these works have 

inspired new theories.  

 

2.1 History of Architectural Design Decisions 

Until 2004, the definition of software architecture did not mention Architecture Rationale. It 

was first mentioned in the definition provided by Perry and Wolf [18]. Jansen and Bosch in 

2005 [6] introduced the software architecture as a composition of a set of design decisions. 

After which, several papers came to be published on architectural design decision. the 

community saw a raise in them momentum of research on architectural design decisions.  

In 2009, Tang et al. [7] classified architectural knowledge into four broad categories, namely 

context, design, general, and reasoning knowledge. The context knowledge captures the 

project-specific information such as management information and architectural significant 

requirements. The design knowledge comprises of the architectural designs of the software 

systems.  

In 2010, a conceptual model that described relationship between architecture, design decisions 

and architecture rationale was standardized by ISO/IEC/IEEE board. (cf. chapter 1.2). 

In 2016, Bhat et al. [3] introduced a new AKM framework that considered design knowledge 

to be part of context knowledge and combinedly refer to them as dynamic knowledge. They 

created a dynamic knowledge model (cf. section 2.2) that overcame the drawbacks of static 

models in terms of reusability and ability to be configured according to project context.   

In 2017, Bhat et. al developed a tool to automatically extract design decisions from issues 

management system. This tool become part of their AKM framework [8].  

So far, the community has not seen any research related to finding or exploring the relationship 

between two design decisions. However, there are many researches that formalize and define 
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a meta-model to describe design decisions, which has helped in defining a process to identify 

similarity between design decisions. One such model was already introduced in section 1.2.1, 

chapter 1.  

Few works have pondered as far as finding relations between the issues that are tracked using 

software like Atlassian Jira, GitHub etc. Some the papers like "Who Should Fix This Bug?" by 

John Anvik et al go as far as to categorize the text content of the issues and not venture into 

defining relations between the issues itself [4 & 20]. Also, many papers treat this aspect of the 

software architecture as classification problem [8] in the sense that they only deal with 

classifying a design decision into a certain category based on information contained within the 

design decisions. They do not explore possibility of relationship between the design decisions 

within a single category. Few papers like “Automated Duplicate Detection for Bug Tracking 

Systems” by Jalbert et al provide us hints for applying clustering for detection of the duplicate 

documents. 

The subsections following this one will discuss the contribution of few of the aforementioned 

related works that this work was inspired from. The contributions in this chapter can be 

categorized into types: Ones that contribute to extracting and identifying duplicate documents 

and the ones that have applies machine learning to similar fields other than design decisions. 

Section 2.2. 

 

2.2 Dynamic Knowledge Model  

Most organizations such as Apache and Mozilla support documentation of design decisions 

using off the shelf issue tracking systems (ISMs) like JIRA or Bugzilla. These organizations 

follow an agile approach in development of a software system. This means the software is 

delivered with varying architecture as quickly as possible. 

AKM framework developed by Bhat et al envelopes the important aspects of the software 

engineering with respect to issue management systems. This framework thins the boundary 

between issues and design decision, as the case is nowadays since the introduction to agile 

methodologies. The dynamic model defined in the framework includes elements from aspects 

of software project from domain, business, expert work force and activities involved. This is a 

vital approach as architectural design decisions are influenced by various factors like 

requirements, time available, human resources, project context and other past decisions.  The 
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model was created after analysing the data models of specific issue management system 

mentioned before. Hence, the model is reflective of modern issue management systems. 

As mentioned in previous paragraph, the dynamic knowledge has imbibed within it the data 

models of issue management systems and Hence, it is not only composed of the architecture 

management concepts but also concepts of implementation, project management and 

requirement management. The notion of architectural concern is being perceived differently in 

this model compared to ISO definition seen earlier in section 1.2, (cf. Figure 2). Architectural 

concerns are being regarded as requirements of a software system.  It is safe to assume that 

these are synonymous of each other. This notion is important as concern is more conceptual 

term and requirement is a concrete description of a concern.   

 

 

 

Figure 2 Dynamic Meta Model to capture AK as defined by Bhat et al. [3] 

Notice in the meta-model that through the project context every issue can be traced back to one 

or more requirements. The core concept of the dynamic knowledge model is Project that 

includes essential attributes like such as name, description, etc. A project has multiple 

requirements and architectural design decisions pertain to these requirements.  From the 

dynamic knowledge model, the following statements can be made:  
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• A Decision affects 1 or more Architectural Elements.  

• A Decision is justified by 1 or more Architectural Rationale.  

• A Decision is based on 0 or more Design Alternatives.  

• A Decision depends on 0 or more other Decisions.  

• A Decision pertains to one or more Quality Requirements.  

The dynamic knowledge model is an instance of meta-model hence it can be adopted to project 

needs at runtime.  

The dynamic knowledge provides an abstract representation for both the issues and design 

decisions and includes necessary elements, wherein the potential context for comparing design 

decisions could lie.  

 

2.3 Automatic Extraction of Design Decision from Issue Management 

Systems  

Previous section introduces the dynamic knowledge model as developed by Bhat et al. This 

section describes how that model was used to build a system that automatically extracted design 

decisions from the issue management systems. The system used machine learning based 

approach to automatically detect design decisions from issues and to subsequently classify 

them into three design decision categories, namely Structural, Behavioural and Ban decisions. 

The labelled dataset resulting from this system has been made publicly available. Figure 3 

describes the end-to-end workflow of the pipeline for extracting design decisions from issues.  

 

Figure 3: ML pipeline for detecting design decisions and classification by Bhat et al [3]. 

 The pipeline was implemented using Apache Spark’s MLlib (machine learning library), which 

provided interfaces to create and execute the pipelines. The pipeline with its configurations and 

the generated model was eventually persisted as a Spark model instance in the AKM tool for 
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subsequent decision classification. That is, for automatic detection and classification of newly 

created issues, this Spark model instance is executed, and the classification label is persisted in 

the AKM tool.  

Success of such a pipeline-based approach is evident in [10]and the authors have provided a 

starting point from where the work of this paper takes off.  

 

2.4 Automatic Duplicate Detection in Issue Tracking System  

Deduplication of issues is one of the major challenges of organizations that track large number 

of issues in day-to-day basis. Often, the deduplication process is manual in nature and requires 

large investment of time by the developers. Jalbert et al in “Automatic Duplication Detection 

for Bug Tracking System” [20] explored the application of clustering algorithms to 

automatically detect and classify duplicate bug reports. The work used document clustering 

using textual similarity to classify whether the bug reported is a duplicate or not. The work 

provided the evidence required to prove that clustering techniques can be applied for textual 

analysis. The key take-away from this work is that the semantic information is rich in textual 

descriptions and summary of the issues.  
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Requirement Analysis and Experimental 

Setup 

 

This section describes experimental setup that helped in deriving requirements of the 

workbench for identifying similar design decisions.  

As first steps, 1574 issues were extracted from two popular open-source projects (Apache 

Spark and Apache Hadoop Common) and manually labelled as either reflecting a design 

decision (784) or not a design decision (790). The design decisions were described used tables 

with columns and rows, rows representing a design decision and columns representing an 

architectural concern they pertain to or architecture elements they affect.  

 

Next, the tools for exploring the design decisions were researched and compared. Rapid Miner 

(RM) studio and WEKA were evidently the most popular and robust tools for beginners to 

experiment with machine learning techniques. They have workbench that helps users in 

exploring applications of machine learning techniques. They both contain necessary set of 

libraries and support materials required for exploring application of clustering algorithms to 

identify similar design decisions. However, there are few differences that make WEKA a little 

unfavourable for the thesis. First, WEKA require the data to be provide in ARFF. Secondly, 

WEKA’s data import library was unable to extract design decisions and threw complex errors 

that were difficult to debug. Finally, WEKA workbench UI is not user-friendly and has a steep 

learning curve. Due to these reasons and due to the time constraints, a decision was made to 

use RM studio for initial requirement analysis.  

  

RM studio provides a canvas for designing workflows for data scientists. You can visually 

create flows that determine how the data is consumed, transformed and have algorithm applied 

on them to determine patterns in data. Helps in rapid prototyping to experiment with your 

datasets.  It also provides necessary visualization tools to view your results, which makes it 

attractive for in depth analysis of clusters and similarity techniques. Building blocks of RM 

studio are called Operators and a workflow of interconnected operators is called Process. RM 
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studio comes with many operators grouped by their functions, which makes it an ideal tool for 

rapid prototyping and building quick experimental setup.  

 

Before the dataset can be analysed, essential parts were needed to be extracted to only include 

required context for the design decisions. This step was necessary to make sure that all the 

semantically-rich elements of design decisions are included in the clustering analysis. To 

determine which elements of design decisions have semantically-rich information, a model was 

derived from the dynamic knowledge model introduced by Bhat et al [4] (cf. Section 2.2) and 

is shown in figure 4.  

 

Figure 4: a derived model from dynamic knowledge model 

Section 2.2 & figure 2 gave an insight into the relationship between design decisions and the 

other elements of the dynamic model. The derived model, with its indications of the type of the 

information that present within it, aids in determining the elements that are rich in semantic 

information. These elements and their concrete structures when included in the dataset provide 

adequate material that represents the context of the design decisions. Additionally, they provide 

the following important inferences that can be considered as the guidelines to detect the 

similarity between design decision. Any two design decisions are similar if  

• They affect 1 or more same architectural elements.  

• They justified by 1 or more similar architectural rationale.  

• They are based on same set of design alternatives.  

• They depend on 0 or more other similar design decisions.  
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• They pertain to one or more similar quality requirements or architectural concern.  

Using the above inferences, the corresponding the attributes of the issues were extracted and 

the dataset was built. For instance, looking back at design decisions mentioned in Table 1, we 

can infer that DD1 is similar to DD2 because they both affect component SQL, or DD1 is 

similar to DD2 because they both share same set of concepts: Apache, SQL, and 

Authentication. 

Three initial experimental setups with RM studio had meant to reveal answers to two 

challenges. 1) how to apply clustering analysis on textual data with missing attributes? 2) which 

similarity measure are suitable for determining similarity between textual data?  

 

RM studio provides parameters measure_types and mixed_measure. These parameters allow 

users to specify the type of measure to user for the input dataset. For textual analysis, the 

measure type must be mixed measure as design decisions may contain combination of textual 

and categorical data. The mixed_measure parameter allows us to set the similarity measure to 

use and this is set to ‘Mixed Euclidean Distance’, this is the only available option.  

 

First setup was to iteratively apply a similarity measure to pairs of all design decisions. RM 

studio provides an operator called “Data to Similarity” to execute this approach. The 

parameters were set to type mixed measure and Mixed Euclidean Distance. The approach had 

inconclusive results (see figure 5) as every design decision was found to be equidistance from 

every other. The second approach was also inconclusive because it led to non-inform cluster 

formations.  

 

Second setup used K-Means with Mixed Euclidian measure. In this process, the leading design 

decisions were initially assigned to a cluster each and consecutive design decisions were 

assigned to the first cluster with exception of design decisions that had missing values. The 

design decisions with either empty summary or empty description were grouped together in 

their own clusters (see figure 6).  

 

The initial experiments clearly revealed a necessity for application of pre-processing operations 

on the design decisions like replacing missing value and removing punctuation on the datasets 

the workbench should convert them into formats that is comparable by distance measures and 

later for determining the similarity between them.  
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Final approach was to add pre-processing steps to the workflow right before distance 

calculation. So, the datasets should be uploaded in particular format, pre-processed using some 

natural language processing technique, converted to vectors for numerical representation and 

clustering algorithm was applied to determine clusters of similar design decisions. This 

workflow was particularly useful in classification of textual data as seen in previous works 

mentioned in Section 2 and expressly seen in [10]. The workflow is especially useful when 

here is a need to apply same set of pre-processing steps in both classification of design decisions 

and to identify similarities between them.   Results of this can be observed in figure 7,8 and 9. 

 

 

 

Figure 5: Comparison of Design Decision directly using Mixed Euclidian Similarity Measure 

 

The experimental setups discussed above helped in identifying the essential operations that 

could be applied to the design decisions, the operations that make them readable for analysis 

in clustering algorithms. Different capabilities of RM studio and WEKA aided in identifying 
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the initial set of requirements of a prototypical workbench that will allows end-user to identify 

similar design decisions (cf. Chapter 4).  

 

Figure 6: Results of comparing design decision directly using Mixed-Euclidian similarity measure 

  

Figure 7: Sample clustering process from RM Studio 
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Figure 8 Sample pre-processing steps from RM Studio 

 

Figure 9: Sample results from RM Studio 
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Requirements 

 

This section lists the requirements gathered after the analysis of experiments conducted and 

explained in Chapter 3. Apart from the results gathered from the experimental setup, the current 

process and architecture of AKM framework developed by Bhat et al (cf. Section 2.3) and their 

AKM tool AMELIE (cf. Appendix) were also analysed. Overall function of AMELIE is 

described in figure 10. The AMELIE system imports issues from JIRA, extracts design 

decisions from these issues, annotate the architectural elements in the extracted design 

decisions, label the quality attributes that issues pertains to and provides recommendation for 

new design decisions about experts. 

The prototypical workbench implemented was made to fit well into the existing ecosystem of 

the AMELIE and hence had to fulfil certain functional and non-functional requirements that 

are described as follows: 

 

Figure 10: AMELIE System Architecture 

 

 

 



25 

 

Requirement 1: Workbench must provide necessary tools to the user to 

explore different clustering algorithms and similarity measures  

The workbench shall be an exploratory web application in the sense it should be a web site that 

allows users to create and reuse multiple experiments. The ability to create experiments by 

input of different parameters by the users for exploring different clustering algorithms and 

similarity measures.  

Requirement 2: Workbench must be configurable  

The workbench shall be configurable in the sense that a person holding a copy of the workbench 

shall be able to spin off his own version of workbench by having an ability to turn on and off 

the features of the workbench.  

Requirement 3: Workbench must provide both a user interface and RESTful 

APIs 

End-users with the help of either a user interface or RESTful APIs should be able to create and 

configure multiple experiments for clustering design decisions and to input new design 

decisions to predict similar past decisions.  

Requirement 4: Workbench must have the ability to automatically import 

date from SocioCortex and AMELIE knowledge based 

End-user should be able to link and import data from the entities and sub entities of the 

SocioCortex and AMELIE Knowledge base.  

Requirement 5: Workbench must be able to consume different data 

formats 

The workbench shall be able to consume more than one format of data like csv, json etc.  

Requirement 6: Workbench shall abstract all operations related to 

identifying similar design decisions 

The operations configured by the end-users should run in background as a single batch. The 

end-users see only the abstracted execution of the experiment and only see information that is 

absolute for them.  
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Requirement 7: Workbench must provide reusable components 

The workbench’s architecture should foster reuse of components. Following the object-

oriented approach, maximum classes and objects of the workbench shall made available for 

reuse to extend the framework when deemed necessary by the end-user. Within the workbench, 

it should be easy to integrate and to interchange foreign components. Any external libraries or 

extensions written for the libraries shall be available in such way as to they can be switched 

with other component of similar nature without effecting the readiness of the system.  

Requirement 8: Workbench shall provide extensions point for integrating 

multiple machine learning libraries 

Many machine learning libraries exists now, and every end-user has his/her choice of weapon. 

Workbench must encompass this philosophy into it and provide points or interfaces that allow 

extending its capabilities.  
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Overview of Workbench Architecture 

 

This section provides overview of workbench’s pre-requisites, process flow, and system 

design. System design is discussed in the last part of this section to provide an easy mapping 

between it and the fulfilled requirements.  

 

5.1   Pre-requisites 

As first steps, for a given project that maintains issues in an issue management system, the end-

users extract all the existing issues into an architectural knowledge management (AKM) system 

AMELIE (c.f. Section 4, Figure 10). Next, the decision detector component of AMELIE 

identifies those issues that reflect design decisions using a supervised machine learning (ML) 

algorithm. For each identified design decisions, the end-user can proceed to store it back to 

SocioCortex or AMELIE for future use. 

The workbench is developed for the end-users to explore through the design decisions that have 

already been made and recorded by them. The workbench assumes that the end-user has a new 

design concern and wants to see if there exist other past decisions which have addressed this. 

Before proceeding to use the workbench, the end-user must do following things  

1. End-user shall use AMELIE to identify and extract all design decisions 

2. The end-user shall know where the data is to be extracted from: does he/she wish to extract 

from SocioCortex by linking the workspace and entities? or does he/she wish to upload the 

data in a standard format like csv. (currently the workbench only supports csv data format 

for uploading) 

Provided the end-user has the design decisions, start training the workbench with few clicks 

(c.f. Section 5.2).  

5.2   Overview of Application Concepts 

This section discusses the overall conceptualization of workbench and describes elements 

defined within its architecture. The high-level overview of the process is shown in Figure 5.1. 
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Figure 11: User-centric process overview for training and predict similar design decisions 

 

The workbench is implement based on the requirements that were mentioned in the previous 

section.  End-users will be provided with a web application that will help them explore through 

their experiments through the concept of workflows. Workflows are automation of group of 

tasks that are executed either sequentially or parallelly.  Each user can create his own workflow 

for exploring his/her design decisions.  

The concept of workflows that are discussed here follow the convention defined by Apache 

Spark ML library. Apache Spark ML Team defines workflows in a manner that is easy to adopt, 

it provides a set of abstraction for understanding and applying machine learning algorithms and 

pre-processing functions.  

A typical standard machine learning workflow has following steps: 

I. Data Ingestion 

II. Features Extraction 

III. Model Training 

IV. Prediction 

Following the Apache Spark convention, the pipeline’s key concepts are following 

1. Pipeline 

2. Pipeline Stage 
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3. Transformers 

4. Estimators 

5. Models  

Pipeline 

As discussed earlier, a Pipeline is a single workflow within the context of machine learning. 

Creating a pipeline means defining stages of the user defined operations that are to be 

performed on the design decisions. A pipeline consists of one or more Pipeline Stages. 

Pipeline Stage 

A Pipeline Stage represents a single stage in a pipeline and is an operation that is applied to 

each of the design decision. A pipeline stage operation could a data transformation function 

such as removing punctuations or applying a ML algorithm. A pipeline stage can either be a 

Transformer or an Estimator. 

Transformer 

A Transformer is a pipeline component that transforms a document into another document after 

applying some user defined function on it. User defined functions are usually applied to the 

documents to prepare before a machine learning algorithm can work with it. An example of a 

transformer would be a user defined function that changes all capital letters in the documents 

to lowercase. 

Estimator 

An Estimator is a machine learning algorithm that learns from the documents, the processing 

is known as fitting a model. An estimator produces a Model for a given set of documents and 

parameters, which is then used to calculate predictions. An example of an estimator would be 

K-Means clustering algorithm.  

Model 

The Model produced by an Estimator is a Transformer by itself that transforms the input 

documents by adding predictions to them. The process of generating a model on applying a 

learning algorithm is called as fitting the model. Depending whether the model was fitted 

during the training phase or the prediction phase a model can either be Pipeline Model or 

Prediction Model. 
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Every pipeline is an instance of typical ML workflow. A pipeline has one or more (usually 

more than two) pipeline stages. A stage implements can a transformer (that can load data or 

extract features) or an estimator (that performs ML). The design decisions fed by the user to 

workbench are passed through each pipeline stage in the order defined. The outputs of a 

pipeline execution are a model that can be used later for predicting similar design decisions 

and a cluster table of design decisions.  

5.3   User-Centric Pipeline Execution Flow 

The entire process of training and identifying the similar design decision is divided into two 

parts: Training and Prediction (which is detailed in the Section 5.3) and their corresponding 

types of pipelines are known as Training Pipeline and Prediction Pipeline. As mentioned in 

the section 5.2, pipelines are typical ML workflows and the workbench allows users to quickly 

create, assemble and configure workflows that are instances of pipelines that can be executed. 

At any point of time users can either create a new training pipeline that trains a pipeline model 

or a new prediction pipeline, which is a pipeline created using an already trained model.  

Figure 11 shows the process diagram that the user will follow to create and train pipelines. 

Figure 5.3 shows the homepage of the workbench, which displays the workflow overview of 

training and prediction pipelines. 

Training Pipeline 

In context of machine learning and in our application, training means generation of a model 

that uses the existing design documents to learn patterns emerging within the design decisions. 

The model transforms the input design decisions into a group of design decisions that are 

assigned to clusters based on emerged patterns.   

The created training pipeline follows the steps in training phase from figure 11 when it is 

executed. End-user creates a pipeline with the necessary configuration. The workbench 

currently supports creating a pipeline with following configurations: Name of pipeline, Library 

to use, clustering algorithm to use, clustering parameters, selection of feature extractor and 

uploading documents in some format or linking to a SocioCortex workspace. (see figure 13). 

Once the user saves and runs the training pipeline following operations take place: The design 

decisions are extracted from the provided file or linked workspace, transformations are applied 
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using specified library and configurations, a trained model is generated (eventually saves it) 

and resulting clustered are display as table and graph.  

 

 

Figure 12 Homepage of Exploratory Workbench for Document Clustering and Prediction 

 

When creating a pipeline, end-user must choose the library he wants to use, transformations to 

apply to the design documents, select ML algorithm and upload the design decisions. After the 

design decisions are input and before the transformations are applied, the workbench will first 

proceed to clean the data provided to it. The cleaning process involves digesting data using 

multiple functions and this is called as pre-processing stage. The current pre-processing 

functions applied by the workbench are concatenating all string attribute values, removing 

punctuations and converting all string values to lowercase. After the pre-processing stage, 

pipeline stages are executed. Once all the transformers are applied, marking the completion of 

pre-processing stage, the design documents are ready to be fed to the machine learning 

algorithm. Estimators are applied, and the Model is fitted (see figure 14). From here the 

workbench proceeds further to transform example design decisions using the model generated 
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to obtain a pre-calculated set of clusters. The number of cluster is defined by the end-users. 

These pre-calculated set of clusters provide us a smaller set of design documents to compare. 

Prediction Pipeline 

Prediction means transforming the given new design decisions using the model previously 

obtained in the training phase and predicting a cluster label for the provided design decisions. 

Prediction pipeline predicts the cluster that for the new design decisions falls under and 

identifies decisions with similar context.   

 

Figure 13 Page for Creating Training Pipeline 

 

Figure 14 Training Pipeline Stages Example 
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A prediction pipeline follows the steps in prediction phase from figure 11 when it is executed. 

In the prediction phase, user selects a previously trained pipeline to run with a new design 

decision. (see figure 15 & figure 16). Once the prediction pipeline runs, it predicts the cluster 

label for the given design decision. The cluster label is then used to retrieve past design 

decisions that are part of the same cluster. Next, iterative comparison is made between each of 

the past design decision with the new design decision using similarity measure cosine similarity 

and Jaccard coefficient. This stage is the ranking stage. The result of the ranking stage consists 

of degree of similarities, which can then be used to determine the top design decisions that are 

similar (see figure 15).   

 

Figure 15 Application Page showing a list of previously trained pipelines 
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Figure 16 Application page showing the selected pipeline and text area to add new design decision 

 

5.4   System Architecture 

This section outlines the design of the workbench, providing details of essential components 

that make up the architect of the system.   

The system is divided into three layers: Persistence, Middleware and Presentation. Persistence 

layer handles the storing and retrieval from storage and has components specific to the type of 

storage. The middleware layer handles the training design decisions and predicting results. The 

presentation layer has views that are exposed to the end-users. The architecture is realized using 

carefully chosen languages, and frameworks based on the requirements. Next sections will 

discuss in detail the components and the roles of the components present within each layer in 

detail. The overview of the complete architecture with its components is shown in figure 17.  

Persistence Layer 

The workbench uses two types of storage: the MongoDB and Physical filesystem. It uses 

MongoDB component to communicate with a Mongo database. The MongoDB component is 

responsible all storing and retrieving operation from the MongoDB. The workbench stores the 

configurations of libraries (that it is extended with) and pipelines created by the user in 

MongoDB. The trained models and results are stored within the physical filesystem. 
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Figure 17 System architecture of the workbench 

 

  

Middleware 

The middleware is the core of the workbench, where all operations are carried out. It is 

composed of three main components and other supporting components: Predict, Train and 

REST controller. 

Training 

Training components encapsulates the implementations of all tasks dealing with training the 

pipeline. It has supporting components that allow clustering operations. It consists of a main 

factory class that creates and stores pipeline configurations. The factory class creates objects 
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of the classes that implement interfaces of a training pipeline. a sample UML view as show in 

figure 18. The IDataLoader interface is also provided to facilitate extending the framework to 

add other format data handling.  

 

Figure 18 Sample class diagram of training component 

 

Predict 

The predict component is responsible for all operation dealing with predicting the cluster label 

for a new design decision and generating results containing similar design decisions. It consists 

of a class that uses IDataLoader interface to load models and results into it. Its main component 

is the Ranking component that applying similarity measures to the clusters and returns 

percentage similarity between provided new design decision and the other cluster members.  

Sample UML diagram of the Predict component is as shown in figure 5.9. Currently only cosine 

similarity and Jaccard similarity are implemented.  

REST Controller 

All incoming requests are channelled to the middleware through this component. The REST 

controller uses the defined routes to forward requests to the right component. The routes are 

defined in a config file called routes.conf.  
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Figure 19 Class diagram of predict component 

  

Presentation Layer 

The presentation layer presents the users with a web-based interface that lets users train and 

predict similar design decisions. The views have been implemented in AngularJS and 

presents the user with necessary forms for training and predicting design decisions (c.f. 

Section 5.3, figures 5.2 - 5.7). 

Additional components apart ones mentioned in these layers exists. However, they have been 

omitted to mention here as they are basic components are part of languages and frameworks 

and thesis assumes its audience have basic language of these. Additional, documents required 

for efficient handover are either provided in appendix or in code repository.  
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Review and Assessment of Requirements 

 

This section will discuss the achieved requirements (c.f. Chapter 4) for the workbench. 

Requirement 1: Workbench must provide necessary tools to the user to 

explore different clustering algorithms and similarity measures  

Requirement 1 has been achieved since user can explore many different options for clustering 

using the workbench with help of pipelines. Users can create as many experiments as he/she 

wants and run them. 

Requirement 2: Workbench must be configurable  

The workbench uses MongoDB and physical filesystem to store the configuration that it must 

run with. Several configurations are available to adjust at any point of time to adjust the 

workbench settings (can be found in the workbench code base). This requirement has been 

covered. 

Requirement 3: Workbench must provide both a user interface and RESTful 

APIs 

Requirement 3 is achieved by exposing both a UI and web services to the end-users. End user 

can create and execute pipelines using the REST Methods provided. All necessary REST 

methods are implemented and are available (c.f. Appendix C API Documentation).  

Requirement 4: Workbench must have the ability to automatically import 

date from SocioCortex and AMELIE knowledge based 

This requirement specifies that end-user should be able to link and import data from the entities 

and sub-entities of the SocioCortex and AMELIE Knowledge base. The requirement has ben 

met and available in the workbench as discussed in Section 5.3 & 5.4.  

Requirement 5: Workbench must be able to consume different data 

formats 
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Due to the time constraints, the workbench has not been extended to support other data format 

imports yet. However, adequate interfaces are to extend the framework with more data loader 

components and classes.  This requirement is marked incomplete and will be taken up as part 

of future works. 

Requirement 6: Workbench shall abstract all operations related to 

identifying similar design decisions 

With the help of pipelines, the end-users are hidden from the implementations and execution 

of the training and prediction. End-user only has to concern himself with the design decisions 

that he is feeding and nothing else.   

Requirement 7: Workbench must provide reusable components 

All components that are necessary throughout the application are added to separate directories 

(corresponding to the library directory or parent directory) and are available as static classes 

and methods. Requirement 7 has been marked as complete.   

Requirement 8: Workbench shall provide extensions point for integrating 

multiple machine learning libraries 

Requirement 8 has been achieved by providing adequate interfaces and factory methods are 

provided to facilitate extension of the workbench features.  

Other than these high-level requirement, more function and non-functional requirements have 

been recorded. A table of requirements is added to the appendix for reference. 
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Evaluation and Results 

 

The traditional evaluation strategies for clustering involve splitting the datasets in to training 

and testing datasets. The clustering model is trained on the training dataset and the evaluated 

against training dataset. However, the use of clustering algorithm is to identify emerging 

patterns and areas of concentrations for datasets. However, the workbench only provides users 

with ability to create clustering models with their set of configurations. The purpose of the 

workbench is to provide ability to run multiple experiments using end-user’s strategy and 

integrate its results into his/her own AKM framework. For this reason, the thesis here employs 

an evaluation strategy that simply answers the question: does such a workbench work? And 

what are its additional benefits.  

To evaluate the workbench to see if it gets relevant results, first, many sample datasets with 

varying number of design decisions were required. The test datasets needed to be created which 

contained mixtures of duplicated and related design decisions. Such test datasets were creating 

by scheming through various open source projects and identifying design decisions within 

them. Next, design decisions that affected other design decisions in different projects were 

collected. The obtained datasets were mixed together other non-duplicates and irrelevant 

design decisions. This was to evaluate if the workbench found other design decisions that are 

could have been of interest. The datasets obtained were as follows: Two open source projects: 

Apache Solr and Hadoop Commons, one dataset from AMELIE (already identified design 

decisions from Apache Spark and Hadoop) and one dataset containing design decisions that 

affect the SQL component of the underlying systems. Once the datasets were obtained, the 

were fed to the workbench to train and to identifying similar design decisions. For predicting, 

the description of a selected design decision (combinations of summary, descriptions and other 

related attributes) was used. If the workbench, return itself and duplicates, the test was marked 

as success. The following are evaluation steps,  

1. Take a design decision 

2. Obtain its relative context values (Summary, Descriptions, Keyword etc.)  

3. Feed to predict pipeline 

4. From results obtained, verify if its duplicates exist in the same cluster 

5. Check its similarity index 
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The workbench was successful in returning the original design decision and duplicated with 

high cosine similarity (~90% and above) and Jaccard similarity (~40% and around). Percentage 

similarity for Jaccard Measure was found to greater than 60% for most duplicates. One 

surprisingly additional benefit of the workbench was that it also clustered related design 

decisions within the same cluster and ranked them with high similarities. This is taken as sign 

of the novelty of the workbench. While most clustering algorithms to find areas of 

concentrations and classification of the textual document, the workbench uses the clustering 

algorithm with completed different purpose of identifying related and duplicate issues.   

There could only limited evaluation of the workbench mainly due to the low number of design 

decisions that have affects across projects and inadequate maintenance of the related issues. 

Feedback from two industrials partners brought into highlight necessity for the workbench is 

not just for identifying design decisions. It can also be used in recommending experts who 

could handle new design decisions.   
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Conclusion 

 

To summarize, the work here provided key insights into application of machine learning 

algorithm for document clustering analysis combined with the power of similarity measures. 

The conclusion is drawn based on success of the workbench in not only identifying duplicate 

design decisions but also related ones. The workbench can also be used to reveal critical flaws 

in process followed in documenting design decisions.  

The requirements fulfilled by the workbench were analysed to see if it’s a feasible solution. 

The workbench three additional benefits from a data engineer’s perspective: first, if developed 

further, the workbench promises to be a single atomic tool all data analysis needs. Second, the 

workbench framework can also be used for application of document clustering other than 

design decisions. Third, the workbench exposes external APIs to consume its functions, which 

most tools do not provide.   

Success is but temporary for the workbench needs to develop further to make it a powerful 

with ability to do supernatural things. The difficulty of implementing a workbench with can 

cross function with different algorithms was not overlooked. No two ML library are the same. 

One thing, they have different representation of the models and results. Given below are 

concerns and reasons that provide insight into limitations of the workbench.  

Why two documents within the same cluster could have a negative or zero value for 

similarity measure? 

Clusters are calculated by randomly picking a document to be represented as cluster centre and 

all other documents are included in the cluster based on their distance calculated by some 

distance measure from that centre.  If a border is visualized around cluster, then the two 

documents that you try to compare may be present near the opposite side of the border. They 

belong to the same cluster, however, they are too far apart each other. Hence, they turn out to 

be very dissimilar. 
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Problems with Jaccard Coefficient 

Jaccard Coefficient calculates similarity for documents based on number of distinct words with 

in the documents. So, as size of document increases, number of distinct words increases. More 

distinct words between documents means that there are very less number of common terms 

between them. Jaccard Coefficient becomes very small to imply that two documents are 

dissimilar, however that might not be case if you look at the documents closely sometimes.  

Few more reason why Jaccard Coefficient fails is due to existence of words that are rarely used 

together such as words that are joined (ex. Class names, object variables) etc. there is set 

defined way to separate out these kind of words as the way the words are joined may be on 

purpose or my mistake. 

You say workbench is customizable. Yet I see only one library, why? 

• Configurable means here one can create a pipeline with any configuration  

• Workbench is configurable in sense, we have laid down the foundation for you to 

extend the workbench with multiple libraries. A clear defined flow is present with good 

UI.  

• Libraries with come with their own set of limitations: Have their own way to defining 

results, tailoring them to fit the result into a generic one takes a lot of time.  Hence, I 

decided to concentrate on a single library but to build at least a complete Clustering-

Prediction workflow.  

Why Spark?  

• Open Source, no license issues unlike Rapid Miner  

• Spark consists of its own SQL library, meaning SQL syntax for easy data operations, 

retrieving datasets, selecting rows etc. 

• Apply iterative operation on all rows without too many for loops  

Limitations with Spark  

Spark library does not have any implementation of stemming, but good news is that the 

workbench can be extended to include your own version of stemming. 

 

 



44 

 

Bibliography 

 

[1] Managing architectural decision models with dependency relations, integrity constraints, 

and production rules by Olaf Zimmermann, Jana Koehler,Frank Leymann, Ronny Polley and 

Nelly Schuster, 2008. 

[2] ISO/IEC/IEEE 42010:2011,Systems and software engineering - Architecture description, 

the latest edition of the original IEEE Std 1471:2000,Recommended Practice for Architectural 

Description of Software-intensive Systems (www.iso-architecture.org/ieee-1471/cm/ ). 

[3] Manoj Bhat, Klym Shumaiev, Andreas Biesdorf, Uwe Hohenstein, Michael Hassel, and 

Florian Matthes. 2016. Meta-model based framework for architectural knowledge 

management. In Proccedings of the 10th European Conference on Software Architecture 

Workshops (ECSAW '16). ACM, New York, NY, USA, Article 12, 7 pages. 

[4] John Anvik, Lyndon Hiew, and Gail C. Murphy. 2006. Who should fix this bug?. In 

Proceedings of the 28th international conference on Software engineering (ICSE '06). ACM, 

New York, NY, USA, 361-370. 

[5] Olaf Zimmermann, Christoph Miksovic, and Jochen M. KüSter. 2012. Reference 

architecture, metamodel, and modeling principles for architectural knowledge management in 

information technology services. J. Syst. Softw. 85, 9 (September 2012), 2014-2033. 

[6] Jansen, Anton; Bosch, Jan -Software architecture as a set of architectural design decisions, 

Software Architecture, 2005. WICSA 2005. 5th Working IEEE/IFIP Conference on 109-120, 

2005, IEEE. 

[7] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, and M. A. Babar. A comparative study of 

architecture knowledge manag. tools. J. of Syst. and Soft., pages 352-370, 2010.  

[8] Slimani, Thabet. (2013). Description and Evaluation of Semantic Similarity Measures 

Approaches. International Journal of Computer Applications. Vol 80. 25-33. 10.5120/13897-

1851. 

[9] Grady Booch, Architecting the unknown, Saturn 2016 

[10] Bhat, Manoj & Shumaiev, Klym & Biesdorf, Andreas & Hohenstein, Uwe & Matthes, 

Florian. (2017). Automatic Extraction of Design Decisions from Issue Management Systems: 

A Machine Learning Based Approach. 138-154. 10.1007/978-3-319-65831-5_10.  

[11] Levy, Omer and Yoav Goldberg. “Dependency-Based Word Embeddings.” ACL (2014).  

http://www.iso-architecture.org/ieee-1471/cm/


45 

 

[12] From Wikipedia, the free encyclopedia: https://en.wikipedia.org/wiki/Word2vec  

[13] Mikolov, Tomas & Chen, Kai & Corrado, G.s & Dean, Jeffrey. (2013). Efficient 

Estimation of Word Representations in Vector Space. Proceedings of Workshop at ICLR. 2013. 

[14] Bosch J. (2004) Software Architecture: The Next Step. In: Oquendo F., Warboys B.C., 

Morrison R. (eds) Software Architecture. EWSA 2004. Lecture Notes in Computer Science, 

vol 3047. Springer, Berlin, Heidelberg 

[15] Kruchten, Philippe. (2004). An Ontology of Architectural Design Decisions in Software-

Intensive Systems. 2nd Groningen Workshop on Software Variability.  

[16] J. Tyree and A. Akerman, "Architecture decisions: demystifying architecture," in IEEE 

Software, vol. 22, no. 2, pp. 19-27, March-April 2005. 

[17] Antony Tang, Paris Avgeriou, Anton Jansen, Rafael Capilla, and Muhammad Ali Babar. 

2010. A comparative study of architecture knowledge management tools. J. Syst. Softw. 83, 3 

(March 2010) 

[18] Perry, D. E.; Wolf, A. L. (1992). "Foundations for the study of software architecture". 

ACM SIGSOFT Software Engineering Notes. 17 (4): 40. 

[19] Manning, Chris, and Hinrich Schütze, Foundations of Statistical Natural Language 

Processing, MIT Press. Cambridge, MA, May 1999 

[20] N. Jalbert and W. Weimer, "Automated duplicate detection for bug tracking systems," 

2008 IEEE International Conference on Dependable Systems and Networks With FTCS and 

DCC (DSN), Anchorage, AK, 2008, pp. 52-61. 

[21] Saimadhu Polamauri, April 2015, “Five most popular similarity measures implementation 

in python, https://dataaspirant.com/2015/04/11/five-most-popular-similarity-measures-

implementation-in-python/ 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Word2vec
https://dataaspirant.com/2015/04/11/five-most-popular-similarity-measures-implementation-in-python/
https://dataaspirant.com/2015/04/11/five-most-popular-similarity-measures-implementation-in-python/


46 

 

Appendix 

 

A. Use Case Scenarios 

Use Case ID UC1 

Use Case Name Create Pipeline 

Actors Architects, Developers, Data Engineers  

Description User accesses the workbench and views the create pipeline page 

of the workbench. A form is presented to the user to input the 

required configuration of the pipeline. User is provided a "save 

& run" to create and execute the pipeline 

Preconditions 1. User has navigated to create pipeline page using the top 

navbar provided 

Postconditions 1. System has stored the pipeline configuration to database. 

2. System has stored the trained model. 

3. System has stored the cluster results 

4. User is presented with cluster graph 

 

Normal Flow 1. User navigates to Workbench URL 

2. User click on "Create Pipeline" in the Navbar provided at top 

3. User enters the pipeline name 

4. User selects library 

5. User selects ML algorithm to use 

6. User selects transformer to use 

7. User clicks on "Browse" button 

8. User selects the file he wants to upload 

9. User click "Upload" button 

10. User selects data format option 

11. User clicks on "save & run" button 

Alternate Flow 7a. In Step 7, User has the option to link SocioCortex 

workspace. 

1. User clicks on "Link to SC Workspace" button. 

2. User provides a filename with extension 

3. User selects the workspace from drop down 

4. System displays all the available entities from SC  

5. User selects an entity of the workspace 

6. User selects multiple mining attributes 

 

8a. Step 8 is skipped 

Assumptions 1. User has already extracted the design decision using 

AMELIE 
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Use Case ID UC2 

Use Case Name Visualize Pipeline 

Actors Architects, Developers, Data Engineers  

Description User accesses the workbench and views the visualize page of the 

workbench. A table is presented to the user listing all available 

trained pipelines. On select a pipeline, user is redirect to a page 

that load cluster graphs and cluster table. 

Preconditions 1. User has navigated to visualize page using the top navbar 

provided 

Postconditions 1. System displays user two sections: Cluster Table and Cluster 

Graph 

2. System allows user the ability to expand and collapse part of 

the graph 

Normal Flow 1. User navigates to Workbench URL 

2. User click on "Visualize" in the Navbar provided at top 

3. System displays a table of previously trained pipelines 

4. User selects a pipeline 

5. System redirects user to a page containing cluster table and 

cluster graph 

 

Assumptions 1. User has already extracted the design decisions using 

AMELIE and trained a pipeline use those design decisions 
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Use Case ID UC3 

Use Case Name Predict Pipeline 

Actors Architects, Developers, Data Engineers  

Description User accesses the workbench and selects one of the previously 

trained pipeline that he wants to predict results from. User is 

redirect to page containing text, where he provides the 

description of the design decision. Once user runs the predict 

pipeline, user displayed a table of similar design decisions 

Preconditions 1. User has navigated to cluster documents pipeline page using 

the top navbar provided 

Postconditions 1. System displays to user a table of similar design decisions 

Normal Flow 1. User navigates to Workbench URL 

2. User click on "Cluster Documents" in the Navbar provided at 

top 

3. System displays a table of previously trained pipelines 

4. User selects a pipeline 

5. System redirects user to a page containing a text area 

6. User inputs the description of a new design into the text area 

7. User clicks on “predict” button 

Assumptions 1. User has already extracted the design decisions using 

AMELIE and trained a pipeline use those design decisions 
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B. Requirements Specifications 

Requirement 

ID 

Title  Description Type Priority 

R1 Interface for 

creating pipelines 

System should 

provide user a form 

that allows them to 

create their own 

pipelines with their 

choice of library and 

algorithms.  

Functional 1 

R2 API for creating 

pipelines 

System should expose 

a POST Method to 

create pipelines 

Functional 1 

R3  Interactive graphs System should 

provide graphs to 

visualize the pipeline 

executions results at 

anytime 

Functional 2 

R4 Expand/collapse 

facility for view 

design decisions 

System should 

provide within the 

graph an expand or 

collapse capability to 

view cluster members 

and design decisions  

Functional 3 

R5 List all trained 

pipelines 

System should 

provide a list of 

previously trained 

pipelines for 

visualization and 

predicting 

Functional 1 
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R6 Graph with non-

redundant words 

with in design 

decisions 

System should present 

to the user the list of 

non-redundant words 

within a design 

decision. 

Functional 3 

R7 Interface to 

predict 

similarities 

System should present 

the user with a form to 

enter a new design 

concern and 

predicting similarity. 

Functional 1 

R8 API to predict 

similarities 

System should expose 

a POST to the user, to 

which he/she can give 

a pipeline name and 

input design decision. 

Results should be 

returned to be in json 

format 

Functional 1 

R9 Interface to view 

predict results 

After running 

prediction, System 

should mention the 

cluster the design 

decisions falls under 

and display a table 

with calculated 

similarities  

Functional 2 

R10 Order in 

prediction results 

System should display 

the similarity results 

in descending order of 

one of the similarity 

measure 

Functional 2 
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R10 homepage of the 

workbench 

System should have a 

homepage that 

presents user with the 

overview of the 

process 

Non-

Functional 

3 

R11 API for retrieving 

clusters 

System should expose 

a GET method to 

retrieve previously 

trained pipeline 

clusters 

Functional 2 

R12 API for retrieving 

previously trained 

pipelines 

System should expose 

a GET method to 

retrieve previously 

trained pipelines 

Functional 2 

R13 API for libraries System should expose 

a GET method to 

retrieve workbench’s 

current configurations 

Functional 2 

R14 Interface to Link 

to SC 

System should 

provide necessary 

forms to link and 

import data from SC 

Functional 1 

R15 Interface to 

upload design 

decisions 

System should 

provide necessary 

form elements to 

upload a dataset with 

design decisions in 

certain format 

Functional 1 

R16 Cluster table view System should present 

users with cluster 

tables with member 

count within each 

cluster 

Functional 3 
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R17 Navbar System should 

provide a bar on top 

for users to navigate 

to pages 

Functional 3 
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C. API Specifications 

Title Method Path Parameters 

Get all 

libraries 

GET /clustering/libraries None 

Get all 

pipelines 

GET /clustering/pipelines/ none 

Get a 

pipeline 

GET /clustering/pipeline/:

pipelineName 

pipelineName: String 

Get all 

cluster of a 

pipeline 

GET /pipeline/clusters/:pi

pelineName 

pipelineName: String 

Create 

pipeline 

POST /clustering/pipeline/c

reate 

Cluster Pipeline Object that contains 

following 

1. Name of pipeline: String 

2. library code: Number 

3. algorithm code: String 

4. transformers: Object 

5. dataset values or minning attrbiutes 

from SC: String or Array of Strings 

Predict 

Similarities 

POST /clustering/pipeline/p

redict 

1. textToclassify: String 

2. pipelineName: String 
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D. Abbreviations 

AD – Architectural Description 

ADD – Architectural Design Decisions 

AKM – Architectural Knowledge Management 

AMELIE - Architecture Management Enabler for Leading Industrial software 

ML – Machine Learning 

SC – SocioCortex 

URL – Uniform Request Locator 

MLlib – Machine Learning library 


